CAIE FP1 2009 June — Question 7

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2009
SessionJune
TopicReduction Formulae

7 Let $$I _ { n } = \int _ { 0 } ^ { 1 } t ^ { n } \mathrm { e } ^ { - t } \mathrm {~d} t$$ where \(n \geqslant 0\). Show that, for all \(n \geqslant 1\), $$I _ { n } = n I _ { n - 1 } - \mathrm { e } ^ { - 1 }$$ Hence prove by induction that, for all positive integers \(n\), $$I _ { n } < n ! .$$