Questions — AQA (3548 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA FP2 2013 January Q6
8 marks Standard +0.8
6 A curve is defined parametrically by $$x = t ^ { 3 } + 5 , \quad y = 6 t ^ { 2 } - 1$$ The arc length between the points where \(t = 0\) and \(t = 3\) on the curve is \(s\).
  1. Show that \(s = \int _ { 0 } ^ { 3 } 3 t \sqrt { t ^ { 2 } + A } \mathrm {~d} t\), stating the value of the constant \(A\).
  2. Hence show that \(s = 61\). \(7 \quad\) The polynomial \(\mathrm { p } ( n )\) is given by \(\mathrm { p } ( n ) = ( n - 1 ) ^ { 3 } + n ^ { 3 } + ( n + 1 ) ^ { 3 }\).
    1. Show that \(\mathrm { p } ( k + 1 ) - \mathrm { p } ( k )\), where \(k\) is a positive integer, is a multiple of 9 .
    2. Prove by induction that \(\mathrm { p } ( n )\) is a multiple of 9 for all integers \(n \geqslant 1\).
  3. Using the result from part (a)(ii), show that \(n \left( n ^ { 2 } + 2 \right)\) is a multiple of 3 for any positive integer \(n\).
AQA FP2 2013 January Q8
14 marks Challenging +1.2
8
  1. Express \(- 4 + 4 \sqrt { 3 } \mathrm { i }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
    1. Solve the equation \(z ^ { 3 } = - 4 + 4 \sqrt { 3 } \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
    2. The roots of the equation \(z ^ { 3 } = - 4 + 4 \sqrt { 3 } \mathrm { i }\) are represented by the points \(P , Q\) and \(R\) on an Argand diagram. Find the area of the triangle \(P Q R\), giving your answer in the form \(k \sqrt { 3 }\), where \(k\) is an integer.
  2. By considering the roots of the equation \(z ^ { 3 } = - 4 + 4 \sqrt { 3 } \mathrm { i }\), show that $$\cos \frac { 2 \pi } { 9 } + \cos \frac { 4 \pi } { 9 } + \cos \frac { 8 \pi } { 9 } = 0$$
AQA FP2 2008 June Q1
6 marks Standard +0.3
1
  1. Express $$5 \sinh x + \cosh x$$ in the form \(A \mathrm { e } ^ { x } + B \mathrm { e } ^ { - x }\), where \(A\) and \(B\) are integers.
  2. Solve the equation $$5 \sinh x + \cosh x + 5 = 0$$ giving your answer in the form \(\ln a\), where \(a\) is a rational number.
AQA FP2 2008 June Q2
7 marks Standard +0.8
2
  1. Given that $$\frac { 1 } { r ( r + 1 ) ( r + 2 ) } = \frac { A } { r ( r + 1 ) } + \frac { B } { ( r + 1 ) ( r + 2 ) }$$ show that \(A = \frac { 1 } { 2 }\) and find the value of \(B\).
  2. Use the method of differences to find $$\sum _ { r = 10 } ^ { 98 } \frac { 1 } { r ( r + 1 ) ( r + 2 ) }$$ giving your answer as a rational number.
AQA FP2 2008 June Q3
12 marks Standard +0.8
3 The cubic equation $$z ^ { 3 } + q z + ( 18 - 12 i ) = 0$$ where \(q\) is a complex number, has roots \(\alpha , \beta\) and \(\gamma\).
  1. Write down the value of:
    1. \(\alpha \beta \gamma\);
    2. \(\alpha + \beta + \gamma\).
  2. Given that \(\beta + \gamma = 2\), find the value of:
    1. \(\alpha\);
    2. \(\quad \beta \gamma\);
    3. \(q\).
  3. Given that \(\beta\) is of the form \(k \mathrm { i }\), where \(k\) is real, find \(\beta\) and \(\gamma\).
AQA FP2 2008 June Q4
12 marks Standard +0.3
4
  1. A circle \(C\) in the Argand diagram has equation $$| z + 5 - \mathrm { i } | = \sqrt { 2 }$$ Write down its radius and the complex number representing its centre.
  2. A half-line \(L\) in the Argand diagram has equation $$\arg ( z + 2 \mathrm { i } ) = \frac { 3 \pi } { 4 }$$ Show that \(z _ { 1 } = - 4 + 2 \mathrm { i }\) lies on \(L\).
    1. Show that \(z _ { 1 } = - 4 + 2 \mathrm { i }\) also lies on \(C\).
    2. Hence show that \(L\) touches \(C\).
    3. Sketch \(L\) and \(C\) on one Argand diagram.
  3. The complex number \(z _ { 2 }\) lies on \(C\) and is such that \(\arg \left( z _ { 2 } + 2 \mathrm { i } \right)\) has as great a value as possible. Indicate the position of \(z _ { 2 }\) on your sketch.
AQA FP2 2008 June Q5
10 marks Challenging +1.3
5
  1. Use the definition \(\cosh x = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\) to show that \(\cosh 2 x = 2 \cosh ^ { 2 } x - 1\).
    (2 marks)
    1. The arc of the curve \(y = \cosh x\) between \(x = 0\) and \(x = \ln a\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Show that \(S\), the surface area generated, is given by $$S = 2 \pi \int _ { 0 } ^ { \ln a } \cosh ^ { 2 } x \mathrm {~d} x$$
    2. Hence show that $$S = \pi \left( \ln a + \frac { a ^ { 4 } - 1 } { 4 a ^ { 2 } } \right)$$
AQA FP2 2008 June Q6
5 marks Standard +0.8
6 By using the substitution \(u = x - 2\), or otherwise, find the exact value of $$\int _ { - 1 } ^ { 5 } \frac { \mathrm {~d} x } { \sqrt { 32 + 4 x - x ^ { 2 } } }$$
AQA FP2 2008 June Q7
9 marks Standard +0.8
7
  1. Explain why \(n ( n + 1 )\) is a multiple of 2 when \(n\) is an integer.
    1. Given that $$\mathrm { f } ( n ) = n \left( n ^ { 2 } + 5 \right)$$ show that \(\mathrm { f } ( k + 1 ) - \mathrm { f } ( k )\), where \(k\) is a positive integer, is a multiple of 6 .
    2. Prove by induction that \(\mathrm { f } ( n )\) is a multiple of 6 for all integers \(n \geqslant 1\).
AQA FP2 2008 June Q8
14 marks Challenging +1.2
8
    1. Expand $$\left( z + \frac { 1 } { z } \right) \left( z - \frac { 1 } { z } \right)$$
    2. Hence, or otherwise, expand $$\left( z + \frac { 1 } { z } \right) ^ { 4 } \left( z - \frac { 1 } { z } \right) ^ { 2 }$$
    1. Use De Moivre's theorem to show that if \(z = \cos \theta + \mathrm { i } \sin \theta\) then $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
    2. Write down a corresponding result for \(z ^ { n } - \frac { 1 } { z ^ { n } }\).
  1. Hence express \(\cos ^ { 4 } \theta \sin ^ { 2 } \theta\) in the form $$A \cos 6 \theta + B \cos 4 \theta + C \cos 2 \theta + D$$ where \(A , B , C\) and \(D\) are rational numbers.
  2. Find \(\int \cos ^ { 4 } \theta \sin ^ { 2 } \theta d \theta\).
AQA FP2 2010 June Q1
9 marks Standard +0.3
1
  1. Show that $$9 \sinh x - \cosh x = 4 \mathrm { e } ^ { x } - 5 \mathrm { e } ^ { - x }$$
  2. Given that $$9 \sinh x - \cosh x = 8$$ find the exact value of \(\tanh x\).
AQA FP2 2010 June Q2
8 marks Standard +0.3
2
  1. Express \(\frac { 1 } { r ( r + 2 ) }\) in partial fractions.
  2. Use the method of differences to find $$\sum _ { r = 1 } ^ { 48 } \frac { 1 } { r ( r + 2 ) }$$ giving your answer as a rational number.
AQA FP2 2010 June Q3
9 marks Standard +0.3
3 Two loci, \(L _ { 1 }\) and \(L _ { 2 }\), in an Argand diagram are given by $$\begin{aligned} & L _ { 1 } : | z + 1 + 3 \mathrm { i } | = | z - 5 - 7 \mathrm { i } | \\ & L _ { 2 } : \arg z = \frac { \pi } { 4 } \end{aligned}$$
  1. Verify that the point represented by the complex number \(2 + 2 \mathrm { i }\) is a point of intersection of \(L _ { 1 }\) and \(L _ { 2 }\).
  2. Sketch \(L _ { 1 }\) and \(L _ { 2 }\) on one Argand diagram.
  3. Shade on your Argand diagram the region satisfying
    both $$| z + 1 + 3 i | \leqslant | z - 5 - 7 i |$$ and $$\frac { \pi } { 4 } \leqslant \arg z \leqslant \frac { \pi } { 2 }$$
AQA FP2 2010 June Q4
13 marks Standard +0.8
4 The roots of the cubic equation $$z ^ { 3 } - 2 z ^ { 2 } + p z + 10 = 0$$ are \(\alpha , \beta\) and \(\gamma\).
It is given that \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = - 4\).
  1. Write down the value of \(\alpha + \beta + \gamma\).
    1. Explain why \(\alpha ^ { 3 } - 2 \alpha ^ { 2 } + p \alpha + 10 = 0\).
    2. Hence show that $$\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = p + 13$$
    3. Deduce that \(p = - 3\).
    1. Find the real root \(\alpha\) of the cubic equation \(z ^ { 3 } - 2 z ^ { 2 } - 3 z + 10 = 0\).
    2. Find the values of \(\beta\) and \(\gamma\).
AQA FP2 2010 June Q5
18 marks Standard +0.8
5
  1. Using the identities $$\cosh ^ { 2 } t - \sinh ^ { 2 } t = 1 , \quad \tanh t = \frac { \sinh t } { \cosh t } \quad \text { and } \quad \operatorname { sech } t = \frac { 1 } { \cosh t }$$ show that:
    1. \(\tanh ^ { 2 } t + \operatorname { sech } ^ { 2 } t = 1\);
    2. \(\frac { \mathrm { d } } { \mathrm { d } t } ( \tanh t ) = \operatorname { sech } ^ { 2 } t\);
    3. \(\frac { \mathrm { d } } { \mathrm { d } t } ( \operatorname { sech } t ) = - \operatorname { sech } t \tanh t\).
  2. A curve \(C\) is given parametrically by $$x = \operatorname { sech } t , y = 4 - \tanh t$$
    1. Show that the arc length, \(s\), of \(C\) between the points where \(t = 0\) and \(t = \frac { 1 } { 2 } \ln 3\) is given by $$s = \int _ { 0 } ^ { \frac { 1 } { 2 } \ln 3 } \operatorname { sech } t \mathrm {~d} t$$
    2. Using the substitution \(u = \mathrm { e } ^ { t }\), find the exact value of \(s\).
AQA FP2 2010 June Q6
8 marks Challenging +1.2
6
  1. Show that \(\frac { 1 } { ( k + 2 ) ! } - \frac { k + 1 } { ( k + 3 ) ! } = \frac { 2 } { ( k + 3 ) ! }\).
  2. Prove by induction that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } \frac { r \times 2 ^ { r } } { ( r + 2 ) ! } = 1 - \frac { 2 ^ { n + 1 } } { ( n + 2 ) ! }$$ (6 marks)
    \includegraphics[max width=\textwidth, alt={}]{d417bc62-f92a-4c90-a4c2-435f38e46edc-7_2010_1711_693_152}
AQA FP2 2010 June Q7
10 marks Standard +0.3
7
    1. Express each of the numbers \(1 + \sqrt { 3 } \mathrm { i }\) and \(1 - \mathrm { i }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\).
    2. Hence express $$( 1 + \sqrt { 3 } i ) ^ { 8 } ( 1 - i ) ^ { 5 }$$ in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\).
  1. Solve the equation $$z ^ { 3 } = ( 1 + \sqrt { 3 } \mathrm { i } ) ^ { 8 } ( 1 - \mathrm { i } ) ^ { 5 }$$ giving your answers in the form \(a \sqrt { 2 } \mathrm { e } ^ { \mathrm { i } \theta }\), where \(a\) is a positive integer and \(- \pi < \theta \leqslant \pi\).
AQA FP2 2011 June Q1
8 marks Moderate -0.3
1
  1. Draw on the same Argand diagram:
    1. the locus of points for which $$| z - 2 - 5 \mathrm { i } | = 5$$
    2. the locus of points for which $$\arg ( z + 2 i ) = \frac { \pi } { 4 }$$
  2. Indicate on your diagram the set of points satisfying both $$| z - 2 - 5 i | \leqslant 5$$ and $$\arg ( z + 2 \mathrm { i } ) = \frac { \pi } { 4 }$$ (2 marks)
AQA FP2 2011 June Q2
10 marks Moderate -0.3
2
  1. Use the definitions of \(\cosh \theta\) and \(\sinh \theta\) in terms of \(\mathrm { e } ^ { \theta }\) to show that $$\cosh x \cosh y - \sinh x \sinh y = \cosh ( x - y )$$
  2. It is given that \(x\) satisfies the equation $$\cosh ( x - \ln 2 ) = \sinh x$$
    1. Show that \(\tanh x = \frac { 5 } { 7 }\).
    2. Express \(x\) in the form \(\frac { 1 } { 2 } \ln a\).
AQA FP2 2011 June Q3
6 marks Challenging +1.2
3
  1. Show that $$( r + 1 ) ! - ( r - 1 ) ! = \left( r ^ { 2 } + r - 1 \right) ( r - 1 ) !$$
  2. Hence show that $$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } + r - 1 \right) ( r - 1 ) ! = ( n + 2 ) n ! - 2$$ (4 marks) The cubic equation $$z ^ { 3 } - 2 z ^ { 2 } + k = 0 \quad ( k \neq 0 )$$ has roots \(\alpha , \beta\) and \(\gamma\).
    1. Write down the values of \(\alpha + \beta + \gamma\) and \(\alpha \beta + \beta \gamma + \gamma \alpha\).
    2. Show that \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 4\).
    3. Explain why \(\alpha ^ { 3 } - 2 \alpha ^ { 2 } + k = 0\).
    4. Show that \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = 8 - 3 k\).
  3. Given that \(\alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 } = 0\) :
    1. show that \(k = 2\);
    2. find the value of \(\alpha ^ { 5 } + \beta ^ { 5 } + \gamma ^ { 5 }\).
AQA FP2 2011 June Q5
13 marks Challenging +1.2
5
  1. The arc of the curve \(y ^ { 2 } = x ^ { 2 } + 8\) between the points where \(x = 0\) and \(x = 6\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Show that the area \(S\) of the curved surface formed is given by $$S = 2 \sqrt { 2 } \pi \int _ { 0 } ^ { 6 } \sqrt { x ^ { 2 } + 4 } \mathrm {~d} x$$
  2. By means of the substitution \(x = 2 \sinh \theta\), show that $$S = \pi \left( 24 \sqrt { 5 } + 4 \sqrt { 2 } \sinh ^ { - 1 } 3 \right)$$
AQA FP2 2011 June Q6
8 marks Standard +0.3
6
  1. Show that $$( k + 1 ) \left( 4 ( k + 1 ) ^ { 2 } - 1 \right) = 4 k ^ { 3 } + 12 k ^ { 2 } + 11 k + 3$$
  2. Prove by induction that, for all integers \(n \geqslant 1\), $$1 ^ { 2 } + 3 ^ { 2 } + 5 ^ { 2 } + \ldots + ( 2 n - 1 ) ^ { 2 } = \frac { 1 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)$$
AQA FP2 2011 June Q7
16 marks Challenging +1.2
7
    1. Use de Moivre's Theorem to show that $$\cos 5 \theta = \cos ^ { 5 } \theta - 10 \cos ^ { 3 } \theta \sin ^ { 2 } \theta + 5 \cos \theta \sin ^ { 4 } \theta$$ and find a similar expression for \(\sin 5 \theta\).
    2. Deduce that $$\tan 5 \theta = \frac { \tan \theta \left( 5 - 10 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta \right) } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta }$$
  1. Explain why \(t = \tan \frac { \pi } { 5 }\) is a root of the equation $$t ^ { 4 } - 10 t ^ { 2 } + 5 = 0$$ and write down the three other roots of this equation in trigonometrical form.
    (3 marks)
  2. Deduce that $$\tan \frac { \pi } { 5 } \tan \frac { 2 \pi } { 5 } = \sqrt { 5 }$$
AQA FP2 2012 June Q1
7 marks Standard +0.3
1
  1. Sketch the curve \(y = \cosh x\).
  2. Solve the equation $$6 \cosh ^ { 2 } x - 7 \cosh x - 5 = 0$$ giving your answers in logarithmic form.
AQA FP2 2012 June Q2
7 marks Standard +0.3
2
  1. Draw on the Argand diagram below:
    1. the locus of points for which $$| z - 2 - 3 \mathrm { i } | = 2$$
    2. the locus of points for which $$| z + 2 - \mathrm { i } | = | z - 2 |$$
  2. Indicate on your diagram the points satisfying both $$| z - 2 - 3 \mathrm { i } | = 2$$ and $$| z + 2 - \mathrm { i } | \leqslant | z - 2 |$$ (l mark) \includegraphics[max width=\textwidth, alt={}, center]{ff63460d-0fa1-437d-bc08-3e7ce809e32b-3_1404_1431_1043_319}