AQA FP2 2008 June — Question 4

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2008
SessionJune
TopicComplex Numbers Argand & Loci

4
  1. A circle \(C\) in the Argand diagram has equation $$| z + 5 - \mathrm { i } | = \sqrt { 2 }$$ Write down its radius and the complex number representing its centre.
  2. A half-line \(L\) in the Argand diagram has equation $$\arg ( z + 2 \mathrm { i } ) = \frac { 3 \pi } { 4 }$$ Show that \(z _ { 1 } = - 4 + 2 \mathrm { i }\) lies on \(L\).
    1. Show that \(z _ { 1 } = - 4 + 2 \mathrm { i }\) also lies on \(C\).
    2. Hence show that \(L\) touches \(C\).
    3. Sketch \(L\) and \(C\) on one Argand diagram.
  3. The complex number \(z _ { 2 }\) lies on \(C\) and is such that \(\arg \left( z _ { 2 } + 2 \mathrm { i } \right)\) has as great a value as possible. Indicate the position of \(z _ { 2 }\) on your sketch.