AQA FP2 2008 June — Question 8

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2008
SessionJune
TopicComplex numbers 2

8
    1. Expand $$\left( z + \frac { 1 } { z } \right) \left( z - \frac { 1 } { z } \right)$$
    2. Hence, or otherwise, expand $$\left( z + \frac { 1 } { z } \right) ^ { 4 } \left( z - \frac { 1 } { z } \right) ^ { 2 }$$
    1. Use De Moivre's theorem to show that if \(z = \cos \theta + \mathrm { i } \sin \theta\) then $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
    2. Write down a corresponding result for \(z ^ { n } - \frac { 1 } { z ^ { n } }\).
  1. Hence express \(\cos ^ { 4 } \theta \sin ^ { 2 } \theta\) in the form $$A \cos 6 \theta + B \cos 4 \theta + C \cos 2 \theta + D$$ where \(A , B , C\) and \(D\) are rational numbers.
  2. Find \(\int \cos ^ { 4 } \theta \sin ^ { 2 } \theta d \theta\).