AQA FP2 2010 June — Question 6

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2010
SessionJune
TopicProof by induction

6
  1. Show that \(\frac { 1 } { ( k + 2 ) ! } - \frac { k + 1 } { ( k + 3 ) ! } = \frac { 2 } { ( k + 3 ) ! }\).
  2. Prove by induction that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } \frac { r \times 2 ^ { r } } { ( r + 2 ) ! } = 1 - \frac { 2 ^ { n + 1 } } { ( n + 2 ) ! }$$ (6 marks)
    \includegraphics[max width=\textwidth, alt={}]{d417bc62-f92a-4c90-a4c2-435f38e46edc-7_2010_1711_693_152}