AQA FP2 2010 June — Question 3

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2010
SessionJune
TopicComplex Numbers Argand & Loci

3 Two loci, \(L _ { 1 }\) and \(L _ { 2 }\), in an Argand diagram are given by $$\begin{aligned} & L _ { 1 } : | z + 1 + 3 \mathrm { i } | = | z - 5 - 7 \mathrm { i } |
& L _ { 2 } : \arg z = \frac { \pi } { 4 } \end{aligned}$$
  1. Verify that the point represented by the complex number \(2 + 2 \mathrm { i }\) is a point of intersection of \(L _ { 1 }\) and \(L _ { 2 }\).
  2. Sketch \(L _ { 1 }\) and \(L _ { 2 }\) on one Argand diagram.
  3. Shade on your Argand diagram the region satisfying
    both $$| z + 1 + 3 i | \leqslant | z - 5 - 7 i |$$ and $$\frac { \pi } { 4 } \leqslant \arg z \leqslant \frac { \pi } { 2 }$$