Express each of the numbers \(1 + \sqrt { 3 } \mathrm { i }\) and \(1 - \mathrm { i }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\).
Hence express
$$( 1 + \sqrt { 3 } i ) ^ { 8 } ( 1 - i ) ^ { 5 }$$
in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\).
Solve the equation
$$z ^ { 3 } = ( 1 + \sqrt { 3 } \mathrm { i } ) ^ { 8 } ( 1 - \mathrm { i } ) ^ { 5 }$$
giving your answers in the form \(a \sqrt { 2 } \mathrm { e } ^ { \mathrm { i } \theta }\), where \(a\) is a positive integer and \(- \pi < \theta \leqslant \pi\).