AQA FP2 2011 June — Question 7

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2011
SessionJune
TopicComplex numbers 2

7
    1. Use de Moivre's Theorem to show that $$\cos 5 \theta = \cos ^ { 5 } \theta - 10 \cos ^ { 3 } \theta \sin ^ { 2 } \theta + 5 \cos \theta \sin ^ { 4 } \theta$$ and find a similar expression for \(\sin 5 \theta\).
    2. Deduce that $$\tan 5 \theta = \frac { \tan \theta \left( 5 - 10 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta \right) } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta }$$
  1. Explain why \(t = \tan \frac { \pi } { 5 }\) is a root of the equation $$t ^ { 4 } - 10 t ^ { 2 } + 5 = 0$$ and write down the three other roots of this equation in trigonometrical form.
    (3 marks)
  2. Deduce that $$\tan \frac { \pi } { 5 } \tan \frac { 2 \pi } { 5 } = \sqrt { 5 }$$