A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q7
AQA FP2 2011 June — Question 7
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2011
Session
June
Topic
Complex numbers 2
7
Use de Moivre's Theorem to show that $$\cos 5 \theta = \cos ^ { 5 } \theta - 10 \cos ^ { 3 } \theta \sin ^ { 2 } \theta + 5 \cos \theta \sin ^ { 4 } \theta$$ and find a similar expression for \(\sin 5 \theta\).
Deduce that $$\tan 5 \theta = \frac { \tan \theta \left( 5 - 10 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta \right) } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta }$$
Explain why \(t = \tan \frac { \pi } { 5 }\) is a root of the equation $$t ^ { 4 } - 10 t ^ { 2 } + 5 = 0$$ and write down the three other roots of this equation in trigonometrical form.
(3 marks)
Deduce that $$\tan \frac { \pi } { 5 } \tan \frac { 2 \pi } { 5 } = \sqrt { 5 }$$
This paper
(6 questions)
View full paper
Q1
Q2
Q3
Q5
Q6
Q7