AQA FP2 2010 June — Question 4

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2010
SessionJune
TopicRoots of polynomials

4 The roots of the cubic equation $$z ^ { 3 } - 2 z ^ { 2 } + p z + 10 = 0$$ are \(\alpha , \beta\) and \(\gamma\).
It is given that \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = - 4\).
  1. Write down the value of \(\alpha + \beta + \gamma\).
    1. Explain why \(\alpha ^ { 3 } - 2 \alpha ^ { 2 } + p \alpha + 10 = 0\).
    2. Hence show that $$\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = p + 13$$
    3. Deduce that \(p = - 3\).
    1. Find the real root \(\alpha\) of the cubic equation \(z ^ { 3 } - 2 z ^ { 2 } - 3 z + 10 = 0\).
    2. Find the values of \(\beta\) and \(\gamma\).