Show that
$$( r + 1 ) ! - ( r - 1 ) ! = \left( r ^ { 2 } + r - 1 \right) ( r - 1 ) !$$
Hence show that
$$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } + r - 1 \right) ( r - 1 ) ! = ( n + 2 ) n ! - 2$$
(4 marks)
The cubic equation
$$z ^ { 3 } - 2 z ^ { 2 } + k = 0 \quad ( k \neq 0 )$$
has roots \(\alpha , \beta\) and \(\gamma\).
Write down the values of \(\alpha + \beta + \gamma\) and \(\alpha \beta + \beta \gamma + \gamma \alpha\).