AQA FP2 2011 June — Question 3

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2011
SessionJune
TopicRoots of polynomials

3
  1. Show that $$( r + 1 ) ! - ( r - 1 ) ! = \left( r ^ { 2 } + r - 1 \right) ( r - 1 ) !$$
  2. Hence show that $$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } + r - 1 \right) ( r - 1 ) ! = ( n + 2 ) n ! - 2$$ (4 marks) The cubic equation $$z ^ { 3 } - 2 z ^ { 2 } + k = 0 \quad ( k \neq 0 )$$ has roots \(\alpha , \beta\) and \(\gamma\).
    1. Write down the values of \(\alpha + \beta + \gamma\) and \(\alpha \beta + \beta \gamma + \gamma \alpha\).
    2. Show that \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 4\).
    3. Explain why \(\alpha ^ { 3 } - 2 \alpha ^ { 2 } + k = 0\).
    4. Show that \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = 8 - 3 k\).
  3. Given that \(\alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 } = 0\) :
    1. show that \(k = 2\);
    2. find the value of \(\alpha ^ { 5 } + \beta ^ { 5 } + \gamma ^ { 5 }\).