A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Proof by induction
Q6
AQA FP2 2011 June — Question 6
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2011
Session
June
Topic
Proof by induction
6
Show that $$( k + 1 ) \left( 4 ( k + 1 ) ^ { 2 } - 1 \right) = 4 k ^ { 3 } + 12 k ^ { 2 } + 11 k + 3$$
Prove by induction that, for all integers \(n \geqslant 1\), $$1 ^ { 2 } + 3 ^ { 2 } + 5 ^ { 2 } + \ldots + ( 2 n - 1 ) ^ { 2 } = \frac { 1 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)$$
This paper
(6 questions)
View full paper
Q1
Q2
Q3
Q5
Q6
Q7