Questions — AQA FP3 (144 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA FP3 2010 June Q6
6 The polar equation of a curve \(C _ { 1 }\) is $$r = 2 ( \cos \theta - \sin \theta ) , \quad 0 \leqslant \theta \leqslant 2 \pi$$
    1. Find the cartesian equation of \(C _ { 1 }\).
    2. Deduce that \(C _ { 1 }\) is a circle and find its radius and the cartesian coordinates of its centre.
  1. The diagram shows the curve \(C _ { 2 }\) with polar equation $$r = 4 + \sin \theta , \quad 0 \leqslant \theta \leqslant 2 \pi$$ \includegraphics[max width=\textwidth, alt={}, center]{90a59b47-3799-46a2-b76b-ced5cc3e1aac-4_519_847_443_593}
    1. Find the area of the region that is bounded by \(C _ { 2 }\).
    2. Prove that the curves \(C _ { 1 }\) and \(C _ { 2 }\) do not intersect.
    3. Find the area of the region that is outside \(C _ { 1 }\) but inside \(C _ { 2 }\).
AQA FP3 2010 June Q7
7
  1. Given that \(x = t ^ { \frac { 1 } { 2 } } , x > 0 , t > 0\) and \(y\) is a function of \(x\), show that:
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 t ^ { \frac { 1 } { 2 } } \frac { \mathrm {~d} y } { \mathrm {~d} t }\);
      (2 marks)
    2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 4 t \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t }\).
      (3 marks)
  2. Hence show that the substitution \(x = t ^ { \frac { 1 } { 2 } }\) transforms the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 8 x ^ { 2 } + 1 \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 12 x ^ { 3 } y = 12 x ^ { 5 }$$ into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 3 y = 3 t$$ (2 marks)
  3. Hence find the general solution of the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 8 x ^ { 2 } + 1 \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 12 x ^ { 3 } y = 12 x ^ { 5 }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
AQA FP3 2011 June Q1
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x + \ln ( 1 + y )$$ and $$y ( 2 ) = 1$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.2\), to obtain an approximation to \(y ( 2.2 )\), giving your answer to four decimal places.
AQA FP3 2011 June Q2
2
  1. Find the values of the constants \(p\) and \(q\) for which \(p + q x \mathrm { e } ^ { - 2 x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \frac { \mathrm { d } y } { \mathrm {~d} x } - 2 y = 4 - 9 \mathrm { e } ^ { - 2 x }$$
  2. Hence find the general solution of this differential equation.
  3. Hence express \(y\) in terms of \(x\), given that \(y = 4\) when \(x = 0\) and that \(\frac { \mathrm { d } y } { \mathrm {~d} x } \rightarrow 0\) as \(x \rightarrow \infty\).
AQA FP3 2011 June Q3
3
  1. Find \(\int x ^ { 2 } \ln x \mathrm {~d} x\).
  2. Explain why \(\int _ { 0 } ^ { \mathrm { e } } x ^ { 2 } \ln x \mathrm {~d} x\) is an improper integral.
  3. Evaluate \(\int _ { 0 } ^ { \mathrm { e } } x ^ { 2 } \ln x \mathrm {~d} x\), showing the limiting process used.
AQA FP3 2011 June Q4
4 By using an integrating factor, find the solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + ( \cot x ) y = \sin 2 x , \quad 0 < x < \frac { \pi } { 2 }$$ given that \(y = \frac { 1 } { 2 }\) when \(x = \frac { \pi } { 6 }\).
(10 marks)
AQA FP3 2011 June Q5
5
  1. Given that \(y = \ln ( 1 + 2 \tan x )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    (You may leave your expression for \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) unsimplified.)
  2. Hence, using Maclaurin's theorem, find the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( 1 + 2 \tan x )\).
    (2 marks)
  3. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { \ln ( 1 + 2 \tan x ) } { \ln ( 1 - x ) } \right]$$ (4 marks)
AQA FP3 2011 June Q6
6 A differential equation is given by $$\left( x ^ { 3 } + 1 \right) \frac { d ^ { 2 } y } { d x ^ { 2 } } - 3 x ^ { 2 } \frac { d y } { d x } = 2 - 4 x ^ { 3 }$$
  1. Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x } - 2 x$$ transforms this differential equation into $$\left( x ^ { 3 } + 1 \right) \frac { \mathrm { d } u } { \mathrm {~d} x } = 3 x ^ { 2 } u$$ (4 marks)
  2. Hence find the general solution of the differential equation $$\left( x ^ { 3 } + 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 3 x ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } = 2 - 4 x ^ { 3 }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
    \(7 \quad\) The curve \(C _ { 1 }\) is defined by \(r = 2 \sin \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }\). The curve \(C _ { 2 }\) is defined by \(r = \tan \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }\).
  3. Find a cartesian equation of \(C _ { 1 }\).
    1. Prove that the curves \(C _ { 1 }\) and \(C _ { 2 }\) meet at the pole \(O\) and at one other point, \(P\), in the given domain. State the polar coordinates of \(P\).
    2. The point \(A\) is the point on the curve \(C _ { 1 }\) at which \(\theta = \frac { \pi } { 4 }\). The point \(B\) is the point on the curve \(C _ { 2 }\) at which \(\theta = \frac { \pi } { 4 }\). Determine which of the points \(A\) or \(B\) is further away from the pole \(O\), justifying your answer.
    3. Show that the area of the region bounded by the arc \(O P\) of \(C _ { 1 }\) and the arc \(O P\) of \(C _ { 2 }\) is \(a \pi + b \sqrt { 3 }\), where \(a\) and \(b\) are rational numbers.
AQA FP3 2012 June Q1
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \sqrt { ( 2 x ) } + \sqrt { y }$$ and $$y ( 2 ) = 9$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.25\), to obtain an approximation to \(y ( 2.25 )\), giving your answer to two decimal places.
AQA FP3 2012 June Q2
2
  1. Write down the expansion of \(\sin 2 x\) in ascending powers of \(x\) up to and including the term in \(x ^ { 5 }\).
  2. Show that, for some value of \(k\), $$\lim _ { x \rightarrow 0 } \left[ \frac { 2 x - \sin 2 x } { x ^ { 2 } \ln ( 1 + k x ) } \right] = 16$$ and state this value of \(k\).
AQA FP3 2012 June Q3
3 The diagram shows a sketch of a curve \(C\), the pole \(O\) and the initial line.
\includegraphics[max width=\textwidth, alt={}, center]{c4bce668-61f1-4be0-97ee-c635df7e1fc6-2_380_735_1827_648} The polar equation of \(C\) is $$r = 2 \sqrt { 1 + \tan \theta } , \quad - \frac { \pi } { 4 } \leqslant \theta \leqslant \frac { \pi } { 4 }$$ Show that the area of the shaded region, bounded by the curve \(C\) and the initial line, is \(\frac { \pi } { 2 } - \ln 2\).
(4 marks)
AQA FP3 2012 June Q4
4
  1. By using an integrating factor, find the general solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { 4 } { 2 x + 1 } y = 4 ( 2 x + 1 ) ^ { 5 }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
  2. The gradient of a curve at any point \(( x , y )\) on the curve is given by the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 4 ( 2 x + 1 ) ^ { 5 } - \frac { 4 } { 2 x + 1 } y$$ The point whose \(x\)-coordinate is zero is a stationary point of the curve. Using your answer to part (a), find the equation of the curve.
AQA FP3 2012 June Q5
5
  1. Find \(\int x ^ { 2 } \mathrm { e } ^ { - x } \mathrm {~d} x\).
  2. Hence evaluate \(\int _ { 0 } ^ { \infty } x ^ { 2 } \mathrm { e } ^ { - x } \mathrm {~d} x\), showing the limiting process used.
AQA FP3 2012 June Q6
6 It is given that \(y = \ln ( 1 + \sin x )\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \mathrm { e } ^ { - y }\).
  3. Express \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\) in terms of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\mathrm { e } ^ { - y }\).
  4. Hence, by using Maclaurin's theorem, find the first four non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( 1 + \sin x )\).
AQA FP3 2012 June Q7
7
  1. Show that the substitution \(x = \mathrm { e } ^ { t }\) transforms the differential equation $$\text { into } \quad \begin{aligned} x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 6 y & = 3 + 20 \sin ( \ln x )
    \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 6 y & = 3 + 20 \sin t \end{aligned}$$ (7 marks)
  2. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 6 y = 3 + 20 \sin t$$ (11 marks)
  3. Write down the general solution of the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 6 y = 3 + 20 \sin ( \ln x )$$
AQA FP3 2012 June Q8
8
  1. A curve has cartesian equation \(x y = 8\). Show that the polar equation of the curve is \(r ^ { 2 } = 16 \operatorname { cosec } 2 \theta\).
  2. The diagram shows a sketch of the curve, \(C\), whose polar equation is $$r ^ { 2 } = 16 \operatorname { cosec } 2 \theta , \quad 0 < \theta < \frac { \pi } { 2 }$$ \includegraphics[max width=\textwidth, alt={}, center]{c4bce668-61f1-4be0-97ee-c635df7e1fc6-4_364_567_1635_726}
    1. Find the polar coordinates of the point \(N\) which lies on the curve \(C\) and is closest to the pole \(O\).
    2. The circle whose polar equation is \(r = 4 \sqrt { 2 }\) intersects the curve \(C\) at the points \(P\) and \(Q\). Find, in an exact form, the polar coordinates of \(P\) and \(Q\).
    3. The obtuse angle \(P N Q\) is \(\alpha\) radians. Find the value of \(\alpha\), giving your answer to three significant figures.
      (5 marks)
AQA FP3 2013 June Q1
1 It is given that \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = ( x - y ) \sqrt { x + y }$$ and $$y ( 2 ) = 1$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.2\), to obtain an approximation to \(y ( 2.2 )\), giving your answer to three decimal places.
AQA FP3 2013 June Q2
2 The Cartesian equation of a circle is \(( x + 8 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 100\).
Using the origin \(O\) as the pole and the positive \(x\)-axis as the initial line, find the polar equation of this circle, giving your answer in the form \(r = p \sin \theta + q \cos \theta\).
(4 marks)
AQA FP3 2013 June Q3
3
  1. Find the values of the constants \(a , b\) and \(c\) for which \(a + b x + c x \mathrm { e } ^ { - 3 x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 3 y = 3 x - 8 \mathrm { e } ^ { - 3 x }$$
  2. Hence find the general solution of this differential equation.
  3. Hence express \(y\) in terms of \(x\), given that \(y = 1\) when \(x = 0\) and that \(\frac { \mathrm { d } y } { \mathrm {~d} x } \rightarrow - 1\) as \(x \rightarrow \infty\).
AQA FP3 2013 June Q4
4 Evaluate the improper integral $$\int _ { 0 } ^ { \infty } \left( \frac { 2 x } { x ^ { 2 } + 4 } - \frac { 4 } { 2 x + 3 } \right) \mathrm { d } x$$ showing the limiting process used and giving your answer in the form \(\ln k\), where \(k\) is a constant.
AQA FP3 2013 June Q5
5
  1. Differentiate \(\ln ( \ln x )\) with respect to \(x\).
    1. Show that \(\ln x\) is an integrating factor for the first-order differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { 1 } { x \ln x } y = 9 x ^ { 2 } , \quad x > 1$$
    2. Hence find the solution of this differential equation, given that \(y = 4 \mathrm { e } ^ { 3 }\) when \(x = \mathrm { e }\).
      (6 marks)
AQA FP3 2013 June Q6
6 It is given that \(y = ( 4 + \sin x ) ^ { \frac { 1 } { 2 } }\).
  1. Express \(y \frac { \mathrm {~d} y } { \mathrm {~d} x }\) in terms of \(\cos x\).
  2. Find the value of \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) when \(x = 0\).
  3. Hence, by using Maclaurin's theorem, find the first four terms in the expansion, in ascending powers of \(x\), of \(( 4 + \sin x ) ^ { \frac { 1 } { 2 } }\).
    (2 marks)
AQA FP3 2013 June Q7
7 A differential equation is given by $$\sin ^ { 2 } x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \sin x \cos x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 2 \sin ^ { 4 } x \cos x , \quad 0 < x < \pi$$
  1. Show that the substitution $$y = u \sin x$$ where \(u\) is a function of \(x\), transforms this differential equation into $$\frac { \mathrm { d } ^ { 2 } u } { \mathrm {~d} x ^ { 2 } } + u = \sin 2 x$$
  2. Hence find the general solution of the differential equation $$\sin ^ { 2 } x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \sin x \cos x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 2 \sin ^ { 4 } x \cos x$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
    (6 marks)
AQA FP3 2013 June Q8
8 The diagram shows a sketch of a curve and a circle.
\includegraphics[max width=\textwidth, alt={}, center]{a2bc95fe-5588-4ff7-a8a3-0cd07df412c9-4_460_693_370_680} The polar equation of the curve is $$r = 3 + 2 \sin \theta , \quad 0 \leqslant \theta \leqslant 2 \pi$$ The circle, whose polar equation is \(r = 2\), intersects the curve at the points \(P\) and \(Q\), as shown in the diagram.
  1. Find the polar coordinates of \(P\) and the polar coordinates of \(Q\).
  2. A straight line, drawn from the point \(P\) through the pole \(O\), intersects the curve again at the point \(A\).
    1. Find the polar coordinates of \(A\).
    2. Find, in surd form, the length of \(A Q\).
    3. Hence, or otherwise, explain why the line \(A Q\) is a tangent to the circle \(r = 2\).
  3. Find the area of the shaded region which lies inside the circle \(r = 2\) but outside the curve \(r = 3 + 2 \sin \theta\). Give your answer in the form \(\frac { 1 } { 6 } ( m \sqrt { 3 } + n \pi )\), where \(m\) and \(n\) are integers.
AQA FP3 2014 June Q1
5 marks
1 It is given that \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \frac { \ln ( x + y ) } { \ln y }$$ and $$y ( 6 ) = 3$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.4\), to obtain an approximation to \(y ( 6.4 )\), giving your answer to three decimal places.
[0pt] [5 marks]