AQA FP3 2011 June — Question 5

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2011
SessionJune
TopicTaylor series
TypeMaclaurin series for ln(trigonometric expressions)

5
  1. Given that \(y = \ln ( 1 + 2 \tan x )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    (You may leave your expression for \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) unsimplified.)
  2. Hence, using Maclaurin's theorem, find the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( 1 + 2 \tan x )\).
    (2 marks)
  3. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { \ln ( 1 + 2 \tan x ) } { \ln ( 1 - x ) } \right]$$ (4 marks)