Given that \(y = \ln ( 1 + 2 \tan x )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
(You may leave your expression for \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) unsimplified.)
Hence, using Maclaurin's theorem, find the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( 1 + 2 \tan x )\).
(2 marks)