| Exam Board | AQA |
| Module | FP3 (Further Pure Mathematics 3) |
| Year | 2014 |
| Session | June |
| Marks | 5 |
| Topic | Fixed Point Iteration |
1 It is given that \(y ( x )\) satisfies the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$
where
$$\mathrm { f } ( x , y ) = \frac { \ln ( x + y ) } { \ln y }$$
and
$$y ( 6 ) = 3$$
Use the improved Euler formula
$$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$
where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.4\), to obtain an approximation to \(y ( 6.4 )\), giving your answer to three decimal places.
[0pt]
[5 marks]