AQA FP3 2014 June — Question 1 5 marks

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2014
SessionJune
Marks5
TopicFixed Point Iteration

1 It is given that \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \frac { \ln ( x + y ) } { \ln y }$$ and $$y ( 6 ) = 3$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.4\), to obtain an approximation to \(y ( 6.4 )\), giving your answer to three decimal places.
[0pt] [5 marks]