AQA FP3 2011 June — Question 6

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2011
SessionJune
TopicSecond order differential equations

6 A differential equation is given by $$\left( x ^ { 3 } + 1 \right) \frac { d ^ { 2 } y } { d x ^ { 2 } } - 3 x ^ { 2 } \frac { d y } { d x } = 2 - 4 x ^ { 3 }$$
  1. Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x } - 2 x$$ transforms this differential equation into $$\left( x ^ { 3 } + 1 \right) \frac { \mathrm { d } u } { \mathrm {~d} x } = 3 x ^ { 2 } u$$ (4 marks)
  2. Hence find the general solution of the differential equation $$\left( x ^ { 3 } + 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 3 x ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } = 2 - 4 x ^ { 3 }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
    \(7 \quad\) The curve \(C _ { 1 }\) is defined by \(r = 2 \sin \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }\). The curve \(C _ { 2 }\) is defined by \(r = \tan \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }\).
  3. Find a cartesian equation of \(C _ { 1 }\).
    1. Prove that the curves \(C _ { 1 }\) and \(C _ { 2 }\) meet at the pole \(O\) and at one other point, \(P\), in the given domain. State the polar coordinates of \(P\).
    2. The point \(A\) is the point on the curve \(C _ { 1 }\) at which \(\theta = \frac { \pi } { 4 }\). The point \(B\) is the point on the curve \(C _ { 2 }\) at which \(\theta = \frac { \pi } { 4 }\). Determine which of the points \(A\) or \(B\) is further away from the pole \(O\), justifying your answer.
    3. Show that the area of the region bounded by the arc \(O P\) of \(C _ { 1 }\) and the arc \(O P\) of \(C _ { 2 }\) is \(a \pi + b \sqrt { 3 }\), where \(a\) and \(b\) are rational numbers.