| Exam Board | AQA |
| Module | FP3 (Further Pure Mathematics 3) |
| Year | 2012 |
| Session | June |
| Topic | Polar coordinates |
3 The diagram shows a sketch of a curve \(C\), the pole \(O\) and the initial line.
\includegraphics[max width=\textwidth, alt={}, center]{c4bce668-61f1-4be0-97ee-c635df7e1fc6-2_380_735_1827_648}
The polar equation of \(C\) is
$$r = 2 \sqrt { 1 + \tan \theta } , \quad - \frac { \pi } { 4 } \leqslant \theta \leqslant \frac { \pi } { 4 }$$
Show that the area of the shaded region, bounded by the curve \(C\) and the initial line, is \(\frac { \pi } { 2 } - \ln 2\).
(4 marks)