AQA FP3 2012 June — Question 6

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2012
SessionJune
TopicTaylor series
TypeMaclaurin series for ln(trigonometric expressions)

6 It is given that \(y = \ln ( 1 + \sin x )\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \mathrm { e } ^ { - y }\).
  3. Express \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\) in terms of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\mathrm { e } ^ { - y }\).
  4. Hence, by using Maclaurin's theorem, find the first four non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( 1 + \sin x )\).