AQA FP3 2010 June — Question 6

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2010
SessionJune
TopicPolar coordinates

6 The polar equation of a curve \(C _ { 1 }\) is $$r = 2 ( \cos \theta - \sin \theta ) , \quad 0 \leqslant \theta \leqslant 2 \pi$$
    1. Find the cartesian equation of \(C _ { 1 }\).
    2. Deduce that \(C _ { 1 }\) is a circle and find its radius and the cartesian coordinates of its centre.
  1. The diagram shows the curve \(C _ { 2 }\) with polar equation $$r = 4 + \sin \theta , \quad 0 \leqslant \theta \leqslant 2 \pi$$ \includegraphics[max width=\textwidth, alt={}, center]{90a59b47-3799-46a2-b76b-ced5cc3e1aac-4_519_847_443_593}
    1. Find the area of the region that is bounded by \(C _ { 2 }\).
    2. Prove that the curves \(C _ { 1 }\) and \(C _ { 2 }\) do not intersect.
    3. Find the area of the region that is outside \(C _ { 1 }\) but inside \(C _ { 2 }\).