AQA FP3 2013 June — Question 7

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2013
SessionJune
TopicSecond order differential equations

7 A differential equation is given by $$\sin ^ { 2 } x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \sin x \cos x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 2 \sin ^ { 4 } x \cos x , \quad 0 < x < \pi$$
  1. Show that the substitution $$y = u \sin x$$ where \(u\) is a function of \(x\), transforms this differential equation into $$\frac { \mathrm { d } ^ { 2 } u } { \mathrm {~d} x ^ { 2 } } + u = \sin 2 x$$
  2. Hence find the general solution of the differential equation $$\sin ^ { 2 } x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \sin x \cos x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 2 \sin ^ { 4 } x \cos x$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
    (6 marks)