Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2010 November Q1
1 The curve \(C\) has equation \(y = \frac { 1 } { 4 } \left( \mathrm { e } ^ { 2 x } + \mathrm { e } ^ { - 2 x } \right)\). Show that the length of the \(\operatorname { arc }\) of \(C\) from the point where \(x = 0\) to the point where \(x = \frac { 1 } { 2 }\) is \(\frac { \mathrm { e } ^ { 2 } - 1 } { 4 \mathrm { e } }\).
CAIE FP1 2010 November Q2
2 Use the method of differences to find \(S _ { N }\), where $$S _ { N } = \sum _ { n = 1 } ^ { N } \frac { 1 } { n ( n + 2 ) }$$ Deduce the value of \(\lim _ { N \rightarrow \infty } S _ { N }\).
CAIE FP1 2010 November Q3
3 A finite region \(R\) in the \(x - y\) plane is bounded by the curve with equation \(y = \sqrt { } x - \frac { 1 } { \sqrt { } x }\), the \(x\)-axis between \(x = 1\) and \(x = 4\), and the line \(x = 4\). Find the exact value of the \(y\)-coordinate of the centroid of \(R\).
CAIE FP1 2010 November Q4
4 Prove by mathematical induction that, for all non-negative integers \(n , 7 ^ { 2 n + 1 } + 5 ^ { n + 3 }\) is divisible by 44 .
CAIE FP1 2010 November Q5
5 Let \(I _ { n } = \int _ { 0 } ^ { 1 } ( 1 - x ) ^ { n } \sin x \mathrm {~d} x\) for \(n \geqslant 0\). Show that $$I _ { n + 2 } = 1 - ( n + 1 ) ( n + 2 ) I _ { n }$$ Hence find the value of \(I _ { 6 }\), correct to 4 decimal places.
CAIE FP1 2010 November Q6
6 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r r } 1 & 2 & - 1 & \alpha
2 & 3 & - 1 & 0
2 & 1 & 2 & - 2
0 & 1 & - 3 & - 2 \end{array} \right)$$ Given that the dimension of the range space of T is 4 , show that \(\alpha \neq 1\). It is now given that \(\alpha = 1\). Show that the vectors $$\left( \begin{array} { l } 1
2
2
0 \end{array} \right) , \quad \left( \begin{array} { l } 2
3
1
1 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { r } - 1
- 1
2
- 3 \end{array} \right)$$ form a basis for the range space of T . Given also that the vector \(\left( \begin{array} { c } p
1
1
q \end{array} \right)\) is in the range space of T , find a condition satisfied by \(p\) and \(q\).
CAIE FP1 2010 November Q7
7 The roots of the equation \(x ^ { 3 } + 4 x - 1 = 0\) are \(\alpha , \beta\) and \(\gamma\). Use the substitution \(y = \frac { 1 } { 1 + x }\) to show that the equation \(6 y ^ { 3 } - 7 y ^ { 2 } + 3 y - 1 = 0\) has roots \(\frac { 1 } { \alpha + 1 } , \frac { 1 } { \beta + 1 }\) and \(\frac { 1 } { \gamma + 1 }\). For the cases \(n = 1\) and \(n = 2\), find the value of $$\frac { 1 } { ( \alpha + 1 ) ^ { n } } + \frac { 1 } { ( \beta + 1 ) ^ { n } } + \frac { 1 } { ( \gamma + 1 ) ^ { n } }$$ Deduce the value of \(\frac { 1 } { ( \alpha + 1 ) ^ { 3 } } + \frac { 1 } { ( \beta + 1 ) ^ { 3 } } + \frac { 1 } { ( \gamma + 1 ) ^ { 3 } }\). Hence show that \(\frac { ( \beta + 1 ) ( \gamma + 1 ) } { ( \alpha + 1 ) ^ { 2 } } + \frac { ( \gamma + 1 ) ( \alpha + 1 ) } { ( \beta + 1 ) ^ { 2 } } + \frac { ( \alpha + 1 ) ( \beta + 1 ) } { ( \gamma + 1 ) ^ { 2 } } = \frac { 73 } { 36 }\).
CAIE FP1 2010 November Q8
8 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations given by $$\begin{array} { l l r } C _ { 1 } : & r = 3 \sin \theta , & 0 \leqslant \theta < \pi ,
C _ { 2 } : & r = 1 + \sin \theta , & - \pi < \theta \leqslant \pi . \end{array}$$
  1. Find the polar coordinates of the points, other than the pole, where \(C _ { 1 }\) and \(C _ { 2 }\) meet.
  2. In a single diagram, draw sketch graphs of \(C _ { 1 }\) and \(C _ { 2 }\).
  3. Show that the area of the region which is inside \(C _ { 1 }\) but outside \(C _ { 2 }\) is \(\pi\).
CAIE FP1 2010 November Q9
9 Find the eigenvalues and corresponding eigenvectors of the matrix $$\mathbf { A } = \left( \begin{array} { r r r } 3 & - 1 & 0
- 1 & 2 & - 1
0 & - 1 & 3 \end{array} \right)$$ Find a non-singular matrix \(\mathbf { M }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } - 2 \mathbf { I } ) ^ { 3 } = \mathbf { M D M } ^ { - 1 }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix.
CAIE FP1 2010 November Q10
10 By using de Moivre's theorem to express \(\sin 5 \theta\) and \(\cos 5 \theta\) in terms of \(\sin \theta\) and \(\cos \theta\), show that $$\tan 5 \theta = \frac { 5 t - 10 t ^ { 3 } + t ^ { 5 } } { 1 - 10 t ^ { 2 } + 5 t ^ { 4 } }$$ where \(t = \tan \theta\). Show that the roots of the equation \(x ^ { 4 } - 10 x ^ { 2 } + 5 = 0\) are \(\tan \left( \frac { 1 } { 5 } n \pi \right)\) for \(n = 1,2,3,4\). By considering the product of the roots of this equation, find the exact value of \(\tan \left( \frac { 1 } { 5 } \pi \right) \tan \left( \frac { 2 } { 5 } \pi \right)\).
CAIE FP1 2010 November Q11
11 It is given that \(x \neq 0\) and $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 x y = 8 x ^ { 2 } + 16$$ Show that if \(z = x y\) then $$\frac { \mathrm { d } ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 4 z = 8 x ^ { 2 } + 16$$ Find \(y\) in terms of \(x\), given that \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 2\) when \(x = \frac { 1 } { 2 } \pi\).
CAIE FP1 2010 November Q12 EITHER
The curve \(C\) has equation $$y = \frac { x ^ { 2 } + 2 \lambda x } { x ^ { 2 } - 2 x + \lambda }$$ where \(\lambda\) is a constant and \(\lambda \neq - 1\).
  1. Show that \(C\) has at most two stationary points.
  2. Show that if \(C\) has exactly two stationary points then \(\lambda > - \frac { 5 } { 4 }\).
  3. Find the set of values of \(\lambda\) such that \(C\) has two vertical asymptotes.
  4. Find the \(x\)-coordinates of the points of intersection of \(C\) with
    (a) the \(x\)-axis,
    (b) the horizontal asymptote.
  5. Sketch \(C\) in each of the cases
    (a) \(\lambda < - 2\),
    (b) \(\lambda > 2\).
CAIE FP1 2010 November Q12 OR
The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = 2 \mathbf { i } + \mathbf { j } + 4 \mathbf { k } + \lambda ( 2 \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k } ) + \mu ( - \mathbf { i } + \mathbf { k } )\). Obtain a cartesian equation of \(\Pi _ { 1 }\) in the form \(p x + q y + r z = d\). The plane \(\Pi _ { 2 }\) has equation \(\mathbf { r } . ( \mathbf { i } - 4 \mathbf { j } + 5 \mathbf { k } ) = 12\). Find a vector equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). The line \(l\) passes through the point \(A\) with position vector \(a \mathbf { i } + ( 2 a + 1 ) \mathbf { j } - 3 \mathbf { k }\) and is parallel to \(3 c \mathbf { i } - 3 \mathbf { j } + c \mathbf { k }\), where \(a\) and \(c\) are positive constants. Given that the perpendicular distance from \(A\) to \(\Pi _ { 1 }\) is \(\frac { 15 } { \sqrt { } 6 }\) and that the acute angle between \(l\) and \(\Pi _ { 1 }\) is \(\sin ^ { - 1 } \left( \frac { 2 } { \sqrt { } 6 } \right)\), find the values of \(a\) and \(c\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2011 November Q1
1 Verify that \(\frac { 1 } { n ^ { 2 } } - \frac { 1 } { ( n + 1 ) ^ { 2 } } = \frac { 2 n + 1 } { n ^ { 2 } ( n + 1 ) ^ { 2 } }\). Let \(S _ { N } = \sum _ { r = 1 } ^ { N } \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } }\). Express \(S _ { N }\) in terms of \(N\). Let \(S = \lim _ { N \rightarrow \infty } S _ { N }\). Find the least value of \(N\) such that \(S - S _ { N } < 10 ^ { - 16 }\).
CAIE FP1 2011 November Q2
2 Prove by mathematical induction that, for all positive integers \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \frac { 1 } { 2 x + 3 } \right) = ( - 1 ) ^ { n } \frac { n ! 2 ^ { n } } { ( 2 x + 3 ) ^ { n + 1 } }$$
CAIE FP1 2011 November Q3
3 The equation $$x ^ { 3 } + 5 x ^ { 2 } - 3 x - 15 = 0$$ has roots \(\alpha , \beta , \gamma\). Find the value of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\). Hence show that the matrix \(\left( \begin{array} { c c c } 1 & \alpha & \beta
\alpha & 1 & \gamma
\beta & \gamma & 1 \end{array} \right)\) is singular.
CAIE FP1 2011 November Q4
4 A curve has parametric equations $$x = 2 \sin 2 t , \quad y = 3 \cos 2 t$$ for \(0 < t < \frac { 1 } { 2 } \pi\). For the point on the curve where \(t = \frac { 1 } { 3 } \pi\), find the value of
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
CAIE FP1 2011 November Q5
5 Use de Moivre's theorem to express \(\cos ^ { 4 } \theta\) in the form $$a \cos 4 \theta + b \cos 2 \theta + c$$ where \(a , b , c\) are constants to be found. Hence evaluate $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { 4 } \theta d \theta$$ leaving your answer in terms of \(\pi\).
CAIE FP1 2011 November Q6
6 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 4 x = \sin 2 t$$ Describe the behaviour of \(x\) as \(t \rightarrow \infty\), justifying your answer.
CAIE FP1 2011 November Q7
7 Show that \(\frac { \mathrm { d } } { \mathrm { d } t } \left( t \left( 1 + t ^ { 3 } \right) ^ { n } \right) = ( 3 n + 1 ) \left( 1 + t ^ { 3 } \right) ^ { n } - 3 n \left( 1 + t ^ { 3 } \right) ^ { n - 1 }\). Let \(I _ { n } = \int _ { 0 } ^ { 1 } \left( 1 + t ^ { 3 } \right) ^ { n } \mathrm {~d} t\). Using the above result, or otherwise, show that $$( 3 n + 1 ) I _ { n } = 2 ^ { n } + 3 n I _ { n - 1 }$$ Hence evaluate \(I _ { 3 }\).
CAIE FP1 2011 November Q8
8 The curve \(C\) has polar equation \(r = 1 + \sin \theta\) for \(- \frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). Draw a sketch of \(C\). The area of the region enclosed by the initial line, the half-line \(\theta = \frac { 1 } { 2 } \pi\), and the part of \(C\) for which \(\theta\) is positive, is denoted by \(A _ { 1 }\). The area of the region enclosed by the initial line, and the part of \(C\) for which \(\theta\) is negative, is denoted by \(A _ { 2 }\). Find the ratio \(A _ { 1 } : A _ { 2 }\), giving your answer correct to 1 decimal place.
CAIE FP1 2011 November Q9
9 Find a cartesian equation of the plane \(\Pi\) containing the lines $$\mathbf { r } = 3 \mathbf { i } + \mathbf { k } + s ( 2 \mathbf { i } + \mathbf { j } - \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 3 \mathbf { i } - 7 \mathbf { j } + 10 \mathbf { k } + t ( \mathbf { i } - 3 \mathbf { j } + 4 \mathbf { k } )$$ The line \(l\) passes through the point \(P\) with position vector \(6 \mathbf { i } - 2 \mathbf { j } + \mathbf { k }\) and is parallel to the vector \(2 \mathbf { i } + \mathbf { j } - 4 \mathbf { k }\). Find
  1. the position vector of the point where \(l\) meets \(\Pi\),
  2. the perpendicular distance from \(P\) to \(\Pi\),
  3. the acute angle between \(l\) and \(\Pi\).
CAIE FP1 2011 November Q10
10 A curve \(C\) has equation $$y = \frac { 5 \left( x ^ { 2 } - x - 2 \right) } { x ^ { 2 } + 5 x + 10 }$$ Find the coordinates of the points of intersection of \(C\) with the axes. Show that, for all real values of \(x , - 1 \leqslant y \leqslant 15\). Sketch \(C\), stating the coordinates of any turning points and the equation of the horizontal asymptote.
[0pt] [Question 11 is printed on the next page.]
CAIE FP1 2011 November Q11 EITHER
The curve \(C\) has equation \(y = \frac { 1 } { 3 } x ^ { \frac { 1 } { 2 } } ( 3 - x )\), for \(0 \leqslant x \leqslant 3\). Find the mean value of \(y\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant 3\). Show that $$\frac { \mathrm { d } s } { \mathrm {~d} x } = \frac { 1 } { 2 } \left( x ^ { - \frac { 1 } { 2 } } + x ^ { \frac { 1 } { 2 } } \right)$$ where \(s\) denotes arc length, and find the arc length of \(C\). Find the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2011 November Q11 OR
Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 1 & 2
0 & 2 & 2
- 1 & 1 & 3 \end{array} \right)$$ The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 }\) is defined by \(\mathbf { x } \mapsto \mathbf { A x }\). Let \(\mathbf { e } , \mathbf { f }\) be two linearly independent eigenvectors of \(\mathbf { A }\), with corresponding eigenvalues \(\lambda\) and \(\mu\) respectively, and let \(\Pi\) be the plane, through the origin, containing \(\mathbf { e }\) and \(\mathbf { f }\). By considering the parametric equation of \(\Pi\), show that all points of \(\Pi\) are mapped by T onto points of \(\Pi\). Find cartesian equations of three planes, each with the property that all points of the plane are mapped by T onto points of the same plane.