CAIE FP1 2010 November — Question 9

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionNovember
Topic3x3 Matrices

9 Find the eigenvalues and corresponding eigenvectors of the matrix $$\mathbf { A } = \left( \begin{array} { r r r } 3 & - 1 & 0
- 1 & 2 & - 1
0 & - 1 & 3 \end{array} \right)$$ Find a non-singular matrix \(\mathbf { M }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } - 2 \mathbf { I } ) ^ { 3 } = \mathbf { M D M } ^ { - 1 }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix.