| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2010 |
| Session | November |
| Topic | Vectors: Lines & Planes |
The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = 2 \mathbf { i } + \mathbf { j } + 4 \mathbf { k } + \lambda ( 2 \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k } ) + \mu ( - \mathbf { i } + \mathbf { k } )\). Obtain a cartesian equation of \(\Pi _ { 1 }\) in the form \(p x + q y + r z = d\).
The plane \(\Pi _ { 2 }\) has equation \(\mathbf { r } . ( \mathbf { i } - 4 \mathbf { j } + 5 \mathbf { k } ) = 12\). Find a vector equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
The line \(l\) passes through the point \(A\) with position vector \(a \mathbf { i } + ( 2 a + 1 ) \mathbf { j } - 3 \mathbf { k }\) and is parallel to \(3 c \mathbf { i } - 3 \mathbf { j } + c \mathbf { k }\), where \(a\) and \(c\) are positive constants. Given that the perpendicular distance from \(A\) to \(\Pi _ { 1 }\) is \(\frac { 15 } { \sqrt { } 6 }\) and that the acute angle between \(l\) and \(\Pi _ { 1 }\) is \(\sin ^ { - 1 } \left( \frac { 2 } { \sqrt { } 6 } \right)\), find the values of \(a\) and \(c\).
\footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
}