| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2011 |
| Session | November |
| Topic | Sequences and series, recurrence and convergence |
1 Verify that \(\frac { 1 } { n ^ { 2 } } - \frac { 1 } { ( n + 1 ) ^ { 2 } } = \frac { 2 n + 1 } { n ^ { 2 } ( n + 1 ) ^ { 2 } }\).
Let \(S _ { N } = \sum _ { r = 1 } ^ { N } \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } }\). Express \(S _ { N }\) in terms of \(N\).
Let \(S = \lim _ { N \rightarrow \infty } S _ { N }\). Find the least value of \(N\) such that \(S - S _ { N } < 10 ^ { - 16 }\).