| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2010 |
| Session | November |
| Topic | 3x3 Matrices |
6 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { A }\), where
$$\mathbf { A } = \left( \begin{array} { r r r r }
1 & 2 & - 1 & \alpha
2 & 3 & - 1 & 0
2 & 1 & 2 & - 2
0 & 1 & - 3 & - 2
\end{array} \right)$$
Given that the dimension of the range space of T is 4 , show that \(\alpha \neq 1\).
It is now given that \(\alpha = 1\). Show that the vectors
$$\left( \begin{array} { l }
1
2
2
0
\end{array} \right) , \quad \left( \begin{array} { l }
2
3
1
1
\end{array} \right) \quad \text { and } \quad \left( \begin{array} { r }
- 1
- 1
2
- 3
\end{array} \right)$$
form a basis for the range space of T .
Given also that the vector \(\left( \begin{array} { c } p
1
1
q \end{array} \right)\) is in the range space of T , find a condition satisfied by \(p\) and \(q\).