Questions — OCR MEI Further Pure Core AS (71 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI Further Pure Core AS 2023 June Q3
3 In this question you must show detailed reasoning.
The function \(\mathrm { f } ( \mathrm { z } )\) is given by \(\mathrm { f } ( \mathrm { z } ) = 2 \mathrm { z } ^ { 3 } - 7 \mathrm { z } ^ { 2 } + 16 \mathrm { z } - 15\).
By first evaluating \(\mathrm { f } \left( \frac { 3 } { 2 } \right)\), find the roots of \(\mathrm { f } ( \mathrm { z } ) = 0\).
OCR MEI Further Pure Core AS 2023 June Q4
4 You are given that \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } ( \mathrm { ar } + \mathrm { b } ) = \mathrm { n } ^ { 2 }\) for all \(n\), where \(a\) and \(b\) are constants.
By finding \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } ( \mathrm { ar } + \mathrm { b } )\) in terms of \(a , b\) and \(n\), determine the values of \(a\) and \(b\).
OCR MEI Further Pure Core AS 2023 June Q5
5 The Argand diagram below shows the points representing 1 and \(z\), where \(| z | = 2\).
\includegraphics[max width=\textwidth, alt={}, center]{26cec6f9-78a7-4f0b-969a-13ad02510c25-3_577_595_312_242} Mark the points representing the following complex numbers on the copy of the diagram in the Printed Answer Booklet, labelling them clearly.
  • \(\mathrm { Z } ^ { * }\)
  • \(\frac { 1 } { z }\)
  • \(1 + z\)
  • iz
OCR MEI Further Pure Core AS 2023 June Q6
6 The matrix \(\mathbf { M }\) is \(\left( \begin{array} { r r } 2 & 1
- 1 & 0 \end{array} \right)\).
  1. Calculate \(\mathbf { M } ^ { 2 } , \mathbf { M } ^ { 3 }\) and \(\mathbf { M } ^ { 4 }\).
  2. Hence make a conjecture about the matrix \(\mathbf { M } ^ { n }\).
  3. Prove your conjecture.
OCR MEI Further Pure Core AS 2023 June Q8
8 The equations of three planes are $$\begin{array} { r } 2 x + y + 3 z = 3
3 x - y - 2 z = 2
- 4 x + 3 y + 7 z = k \end{array}$$ where \(k\) is a constant.
  1. By considering a suitable determinant, show that the planes do not meet at a single point.
  2. Given that the planes form a sheaf, determine the value of \(k\).
OCR MEI Further Pure Core AS 2023 June Q9
9 A transformation T of the plane is represented by the matrix \(\mathbf { M } = \left( \begin{array} { c c } k + 1 & - 1
1 & k \end{array} \right)\), where \(k\) is a
constant. constant. Show that, for all values of \(k , \mathrm {~T}\) has no invariant lines through the origin.
OCR MEI Further Pure Core AS 2023 June Q10
10 The plane P has normal vector \(2 \mathbf { i } + a \mathbf { j } - \mathbf { k }\), where \(a\) is a positive constant, and the point ( \(3 , - 1,1\) ) lies in P . The plane \(\mathrm { x } - \mathrm { z } = 3\) makes an angle of \(45 ^ { \circ }\) with P . Find the cartesian equation of P . \section*{END OF QUESTION PAPER}
OCR MEI Further Pure Core AS 2024 June Q1
1 The quadratic equation \(\mathrm { x } ^ { 2 } + \mathrm { ax } + \mathrm { b } = 0\), where \(a\) and \(b\) are real constants, has a root 2-3.
  1. Write down the other root.
  2. Hence or otherwise determine the values of \(a\) and \(b\).
OCR MEI Further Pure Core AS 2024 June Q2
2 The matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are given by \(\mathbf { A } = \left( \begin{array} { r r } 1 & a
- 1 & 2 \end{array} \right) , \mathbf { B } = \left( \begin{array} { r r } 2 & 0
1 & - 1 \end{array} \right)\) and \(\mathbf { C } = \left( \begin{array} { r r } - 1 & 0
2 & 1 \end{array} \right)\), where \(a\) is
a constant. a constant.
  1. By multiplying out the matrices on both sides of the equation, verify that \(\mathbf { A } ( \mathbf { B C } ) = ( \mathbf { A B } ) \mathbf { C }\).
  2. State the property of matrix multiplication illustrated by this result.
OCR MEI Further Pure Core AS 2024 June Q3
3
  1. Using standard summation formulae, write down an expression in terms of \(n\) for \(\sum _ { r = 1 } ^ { 2 n } r ^ { 3 }\).
  2. Hence show that \(\sum _ { \mathrm { r } = \mathrm { n } + 1 } ^ { 2 \mathrm { n } } \mathrm { r } ^ { 3 } = \frac { 1 } { 4 } \mathrm { n } ^ { 2 } ( \mathrm { an } + \mathrm { b } ) ( \mathrm { cn } + \mathrm { d } )\), where \(a , b , c\) and \(d\) are integers to be determined.
OCR MEI Further Pure Core AS 2024 June Q5
5
  1. Find the volume scale factor of the transformation with associated matrix \(\left( \begin{array} { r r r } 1 & 2 & 0
    0 & 3 & - 1
    - 1 & 0 & 2 \end{array} \right)\).
  2. The transformations S and T of the plane have associated \(2 \times 2\) matrices \(\mathbf { P }\) and \(\mathbf { Q }\) respectively.
    1. Write down an expression for the associated matrix of the combined transformation S followed by T. The determinant of \(\mathbf { P }\) is 3 and \(\mathbf { Q } = \left( \begin{array} { r r } k & 3
      - 1 & 2 \end{array} \right)\), where \(k\) is a constant.
    2. Given that this combined transformation preserves both orientation and area, determine the value of \(k\).
OCR MEI Further Pure Core AS 2024 June Q6
6 You are given that \(\mathbf { M } = \left( \begin{array} { l l } 4 & - 9
1 & - 2 \end{array} \right)\).
  1. Prove that \(\mathbf { M } ^ { n } = \left( \begin{array} { c c } 1 + 3 n & - 9 n
    n & 1 - 3 n \end{array} \right)\) for all positive integers \(n\).
  2. A student thinks that this formula, when \(n = 0\) and \(n = - 1\), gives the identity matrix and the inverse matrix \(\mathbf { M } ^ { - 1 }\) respectively. Determine whether the student is correct.
OCR MEI Further Pure Core AS 2024 June Q7
7 Three planes have equations $$\begin{array} { r } x + 2 y - 3 z = 0
- x + 3 y - 2 z = 0
x - 2 y + k z = k \end{array}$$ where \(k\) is a constant.
  1. For the case \(k = 0\), the origin lies on all three planes. Use a determinant to explain whether there are any other points that lie on all three planes in this case.
  2. You are now given that \(k = 1\).
    1. Show that there are no points that lie on all three planes.
    2. Describe the geometrical arrangement of the three planes.
OCR MEI Further Pure Core AS 2024 June Q8
8 In an Argand diagram, the point P representing the complex number \(w\) lies on the locus defined by \(\left\{ z : \arg ( z - 7 ) = \frac { 3 } { 4 } \pi \right\}\). You are given that \(\operatorname { Re } ( w ) = 1\).
  1. Find \(w\). The point P also lies on the locus defined by \(\{ \mathrm { z } : | \mathrm { z } + 3 - 9 \mathrm { i } | = \mathrm { k } \}\), where \(k\) is a constant.
  2. Find the complex number represented by the other point of intersection of the loci defined by $$\{ z : | z + 3 - 9 i | = k \} \text { and } \left\{ z : \arg ( z - 7 ) = \frac { 3 } { 4 } \pi \right\} .$$
OCR MEI Further Pure Core AS 2020 November Q2
2 Fig. 2 shows two complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) represented on an Argand diagram. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{55a4a9f1-ed86-44bb-8759-dfee0b66f56d-2_985_997_781_239} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure}
  1. On the copy of Fig. 2 in the Printed Answer Booklet, mark points representing each of the following complex numbers.
    • \(\mathrm { Z } _ { 1 } { } ^ { * }\)
    • \(z _ { 2 } - z _ { 1 }\)
    • In this question you must show detailed reasoning.
    In the case where \(z _ { 1 } = 1 + 2 \mathrm { i }\) and \(z _ { 2 } = 3 + \mathrm { i }\), find \(\frac { z _ { 2 } - z _ { 1 } } { z _ { 1 } ^ { * } }\) in the form \(a + \mathrm { i } b\), where \(a\) and \(b\) are real numbers.
OCR MEI Further Pure Core AS 2020 November Q3
3 In this question you must show detailed reasoning.
The roots of the equation \(x ^ { 2 } - 2 x + 4 = 0\) are \(\alpha\) and \(\beta\).
  1. Find \(\alpha\) and \(\beta\) in modulus-argument form.
  2. Hence or otherwise show that \(\alpha\) and \(\beta\) are both roots of \(x ^ { 3 } + \lambda = 0\), where \(\lambda\) is a real constant to be determined.
OCR MEI Further Pure Core AS 2020 November Q4
4 The matrix \(\mathbf { M }\) is \(\left( \begin{array} { r r r } 0 & - 1 & 0
1 & 0 & 0
0 & 0 & 1 \end{array} \right)\).
    1. Calculate \(\operatorname { det } \mathbf { M }\).
    2. State two geometrical consequences of this value for the transformation associated with \(\mathbf { M }\).
  1. Describe fully the transformation associated with \(\mathbf { M }\).
OCR MEI Further Pure Core AS 2020 November Q5
5 You are given that \(u _ { 1 } = 5\) and \(u _ { n + 1 } = u _ { n } + 2 n + 4\).
Prove by induction that \(u _ { n } = n ^ { 2 } + 3 n + 1\) for all positive integers \(n\).
OCR MEI Further Pure Core AS 2020 November Q6
6 The matrices \(\mathbf { M }\) and \(\mathbf { N }\) are \(\left( \begin{array} { l l } \lambda & 2
2 & \lambda \end{array} \right)\) and \(\left( \begin{array} { c c } \mu & 1
1 & \mu \end{array} \right)\) respectively, where \(\lambda\) and \(\mu\) are constants.
  1. Investigate whether \(\mathbf { M }\) and \(\mathbf { N }\) are commutative under multiplication.
  2. You are now given that \(\mathbf { M N } = \mathbf { I }\).
    1. Write down a relationship between \(\operatorname { det } \mathbf { M }\) and \(\operatorname { det } \mathbf { N }\).
    2. Given that \(\lambda > 0\), find the exact values of \(\lambda\) and \(\mu\).
    3. Hence verify your answer to part (i).
OCR MEI Further Pure Core AS 2020 November Q7
7 In the quartic equation \(2 x ^ { 4 } - 20 x ^ { 3 } + a x ^ { 2 } + b x + 250 = 0\), the coefficients \(a\) and \(b\) are real. One root of the equation is \(2 + \mathrm { i }\). Find the other roots.
OCR MEI Further Pure Core AS 2020 November Q8
8
  1. The matrix \(\mathbf { M }\) is \(\left( \begin{array} { r r } 0 & - 1
    - 1 & 0 \end{array} \right)\).
    1. Find \(\mathbf { M } ^ { 2 }\).
    2. Write down the transformation represented by \(\mathbf { M }\).
    3. Hence state the geometrical significance of the result of part (i).
  2. The matrix \(\mathbf { N }\) is \(\left( \begin{array} { c c } k + 1 & 0
    k & k + 2 \end{array} \right)\), where \(k\) is a constant. Using determinants, investigate whether \(\mathbf { N }\) can represent a reflection.
OCR MEI Further Pure Core AS 2020 November Q9
9 Three planes have equations
\(k x + y - 2 z = 0\)
\(2 x + 3 y - 6 z = - 5\)
\(3 x - 2 y + 5 z = 1\)
where \(k\) is a constant. Investigate the arrangement of the planes for each of the following cases. If in either case the planes meet at a unique point, find the coordinates of that point.
  1. \(k = - 1\)
  2. \(k = \frac { 2 } { 3 }\)
OCR MEI Further Pure Core AS 2020 November Q10
10 A vector \(\mathbf { v }\) has magnitude 1 unit. The angle between \(\mathbf { v }\) and the positive \(z\)-axis is \(60 ^ { \circ }\), and \(\mathbf { v }\) is parallel to the plane \(x - 2 y = 0\). Given that \(\mathbf { v } = a \mathbf { i } + b \mathbf { j } + c \mathbf { k }\), where \(a , b\) and \(c\) are all positive, find \(\mathbf { v }\). \section*{END OF QUESTION PAPER}
OCR MEI Further Pure Core AS 2021 November Q1
1 Using standard summation formulae, find \(\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } - 3 r \right)\), giving your answer in fully factorised form.
OCR MEI Further Pure Core AS 2021 November Q2
2 The equation \(3 x ^ { 2 } - 4 x + 2 = 0\) has roots \(\alpha\) and \(\beta\).
Find an equation with integer coefficients whose roots are \(3 - 2 \alpha\) and \(3 - 2 \beta\).