A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Additional Further Pure
Sequences and Series
Q3
OCR MEI Further Pure Core AS 2024 June — Question 3
Exam Board
OCR MEI
Module
Further Pure Core AS (Further Pure Core AS)
Year
2024
Session
June
Topic
Sequences and Series
3
Using standard summation formulae, write down an expression in terms of \(n\) for \(\sum _ { r = 1 } ^ { 2 n } r ^ { 3 }\).
Hence show that \(\sum _ { \mathrm { r } = \mathrm { n } + 1 } ^ { 2 \mathrm { n } } \mathrm { r } ^ { 3 } = \frac { 1 } { 4 } \mathrm { n } ^ { 2 } ( \mathrm { an } + \mathrm { b } ) ( \mathrm { cn } + \mathrm { d } )\), where \(a , b , c\) and \(d\) are integers to be determined.
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9