OCR MEI Further Pure Core AS 2020 November — Question 8

Exam BoardOCR MEI
ModuleFurther Pure Core AS (Further Pure Core AS)
Year2020
SessionNovember
TopicLinear transformations

8
  1. The matrix \(\mathbf { M }\) is \(\left( \begin{array} { r r } 0 & - 1
    - 1 & 0 \end{array} \right)\).
    1. Find \(\mathbf { M } ^ { 2 }\).
    2. Write down the transformation represented by \(\mathbf { M }\).
    3. Hence state the geometrical significance of the result of part (i).
  2. The matrix \(\mathbf { N }\) is \(\left( \begin{array} { c c } k + 1 & 0
    k & k + 2 \end{array} \right)\), where \(k\) is a constant. Using determinants, investigate whether \(\mathbf { N }\) can represent a reflection.