8 In an Argand diagram, the point P representing the complex number \(w\) lies on the locus defined by \(\left\{ z : \arg ( z - 7 ) = \frac { 3 } { 4 } \pi \right\}\). You are given that \(\operatorname { Re } ( w ) = 1\).
- Find \(w\).
The point P also lies on the locus defined by \(\{ \mathrm { z } : | \mathrm { z } + 3 - 9 \mathrm { i } | = \mathrm { k } \}\), where \(k\) is a constant.
- Find the complex number represented by the other point of intersection of the loci defined by
$$\{ z : | z + 3 - 9 i | = k \} \text { and } \left\{ z : \arg ( z - 7 ) = \frac { 3 } { 4 } \pi \right\} .$$