4. A right angled triangle \(T\) has vertices \(A ( 1,1 ) , B ( 2,1 )\) and \(C ( 2,4 )\). When \(T\) is transformed by the matrix \(\mathbf { P } = \left( \begin{array} { l l } 0 & 1
1 & 0 \end{array} \right)\), the image is \(T ^ { \prime }\).
- Find the coordinates of the vertices of \(T ^ { \prime }\).
- Describe fully the transformation represented by \(\mathbf { P }\).
The matrices \(\mathbf { Q } = \left( \begin{array} { c c } 4 & - 2
3 & - 1 \end{array} \right)\) and \(\mathbf { R } = \left( \begin{array} { l l } 1 & 2
3 & 4 \end{array} \right)\) represent two transformations. When \(T\) is transformed by the matrix \(\mathbf { Q R }\), the image is \(T ^ { \prime \prime }\). - Find \(\mathbf { Q R }\).
- Find the determinant of \(\mathbf { Q R }\).
- Using your answer to part (d), find the area of \(T ^ { \prime \prime }\).