A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Complex Numbers Arithmetic
Q5
Edexcel FP1 2012 January — Question 5
Exam Board
Edexcel
Module
FP1 (Further Pure Mathematics 1)
Year
2012
Session
January
Topic
Complex Numbers Arithmetic
Type
Given one complex root, find all roots
5. The roots of the equation $$z ^ { 3 } - 8 z ^ { 2 } + 22 z - 20 = 0$$ are \(z _ { 1 } , z _ { 2 }\) and \(z _ { 3 }\).
Given that \(z _ { 1 } = 3 + \mathrm { i }\), find \(z _ { 2 }\) and \(z _ { 3 }\).
Show, on a single Argand diagram, the points representing \(z _ { 1 } , z _ { 2 }\) and \(z _ { 3 }\).
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9