Edexcel FP1 2010 January — Question 9

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJanuary
TopicLinear transformations

9. $$\mathbf { M } = \left( \begin{array} { c c } \frac { 1 } { \sqrt { 2 } } & - \frac { 1 } { \sqrt { 2 } }
\frac { 1 } { \sqrt { 2 } } & \frac { 1 } { \sqrt { 2 } } \end{array} \right)$$
  1. Describe fully the geometrical transformation represented by the matrix \(\mathbf { M }\). The transformation represented by \(\mathbf { M }\) maps the point \(A\) with coordinates \(( p , q )\) onto the point \(B\) with coordinates \(( 3 \sqrt { } 2,4 \sqrt { } 2 )\).
  2. Find the value of \(p\) and the value of \(q\).
  3. Find, in its simplest surd form, the length \(O A\), where \(O\) is the origin.
  4. Find \(\mathbf { M } ^ { 2 }\). The point \(B\) is mapped onto the point \(C\) by the transformation represented by \(\mathbf { M } ^ { 2 }\).
  5. Find the coordinates of \(C\).