| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2010 |
| Session | January |
| Topic | Proof by induction |
8. (a) Prove by induction that, for any positive integer \(n\),
$$\sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 }$$
(b) Using the formulae for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\), show that
$$\sum _ { r = 1 } ^ { n } \left( r ^ { 3 } + 3 r + 2 \right) = \frac { 1 } { 4 } n ( n + 2 ) \left( n ^ { 2 } + 7 \right)$$
(c) Hence evaluate \(\sum _ { r = 15 } ^ { 25 } \left( r ^ { 3 } + 3 r + 2 \right)\)