| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2011 |
| Session | January |
| Topic | Sequences and series, recurrence and convergence |
5. (a) Use the results for \(\sum _ { r = 1 } ^ { n } r , \sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\), to prove that
$$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r + 5 ) = \frac { 1 } { 4 } n ( n + 1 ) ( n + 2 ) ( n + 7 )$$
for all positive integers \(n\).
(b) Hence, or otherwise, find the value of
$$\sum _ { r = 20 } ^ { 50 } r ( r + 1 ) ( r + 5 )$$