| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | January |
| Topic | Proof by induction |
6. (a) Prove by induction
$$\sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 }$$
(b) Using the result in part (a), show that
$$\sum _ { r = 1 } ^ { n } \left( r ^ { 3 } - 2 \right) = \frac { 1 } { 4 } n \left( n ^ { 3 } + 2 n ^ { 2 } + n - 8 \right)$$
(c) Calculate the exact value of \(\sum _ { r = 20 } ^ { 50 } \left( r ^ { 3 } - 2 \right)\).