Questions — CAIE (7279 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2019 November Q4
Standard +0.3
4 The line \(y = 2 x + 1\) is an asymptote of the curve \(C\) with equation $$y = \frac { x ^ { 2 } + 1 } { a x + b }$$
  1. Find the values of the constants \(a\) and \(b\).
  2. State the equation of the other asymptote of \(C\).
  3. Sketch C. [Your sketch should indicate the coordinates of any points of intersection with the \(y\)-axis. You do not need to find the coordinates of any stationary points.]
    \(5 \quad\) Let \(S _ { N } = \sum _ { r = 1 } ^ { N } ( 5 r + 1 ) ( 5 r + 6 )\) and \(T _ { N } = \sum _ { r = 1 } ^ { N } \frac { 1 } { ( 5 r + 1 ) ( 5 r + 6 ) }\).
CAIE FP1 2019 November Q6
Challenging +1.2
6 With \(O\) as the origin, the points \(A , B , C\) have position vectors $$\mathbf { i } - \mathbf { j } , \quad 2 \mathbf { i } + \mathbf { j } + 7 \mathbf { k } , \quad \mathbf { i } - \mathbf { j } + \mathbf { k }$$ respectively.
  1. Find the shortest distance between the lines \(O C\) and \(A B\).
  2. Find the cartesian equation of the plane containing the line \(O C\) and the common perpendicular of the lines \(O C\) and \(A B\).
CAIE FP1 2019 November Q7
Challenging +1.2
7 The equation \(x ^ { 3 } + 2 x ^ { 2 } + x + 7 = 0\) has roots \(\alpha , \beta , \gamma\).
  1. Use the relation \(x ^ { 2 } = - 7 y\) to show that the equation $$49 y ^ { 3 } + 14 y ^ { 2 } - 27 y + 7 = 0$$ has roots \(\frac { \alpha } { \beta \gamma } , \frac { \beta } { \gamma \alpha } , \frac { \gamma } { \alpha \beta }\).
  2. Show that \(\frac { \alpha ^ { 2 } } { \beta ^ { 2 } \gamma ^ { 2 } } + \frac { \beta ^ { 2 } } { \gamma ^ { 2 } \alpha ^ { 2 } } + \frac { \gamma ^ { 2 } } { \alpha ^ { 2 } \beta ^ { 2 } } = \frac { 58 } { 49 }\).
  3. Find the exact value of \(\frac { \alpha ^ { 3 } } { \beta ^ { 3 } \gamma ^ { 3 } } + \frac { \beta ^ { 3 } } { \gamma ^ { 3 } \alpha ^ { 3 } } + \frac { \gamma ^ { 3 } } { \alpha ^ { 3 } \beta ^ { 3 } }\).
CAIE FP1 2019 November Q8
Standard +0.8
8 The matrix \(\mathbf { M }\) is defined by $$\mathbf { M } = \left( \begin{array} { c c c } 2 & m & 1 \\ 0 & m & 7 \\ 0 & 0 & 1 \end{array} \right) ,$$ where \(m \neq 0,1,2\).
  1. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { M } = \mathbf { P D P } ^ { - 1 }\).
  2. Find \(\mathbf { M } ^ { 7 } \mathbf { P }\).
CAIE FP1 2019 November Q9
Challenging +1.8
9
  1. Use de Moivre's theorem to show that $$\sec 6 \theta = \frac { \sec ^ { 6 } \theta } { 32 - 48 \sec ^ { 2 } \theta + 18 \sec ^ { 4 } \theta - \sec ^ { 6 } \theta }$$
  2. Hence obtain the roots of the equation $$3 x ^ { 6 } - 36 x ^ { 4 } + 96 x ^ { 2 } - 64 = 0$$ in the form sec \(q \pi\), where \(q\) is rational.
CAIE FP1 2019 November Q10
Standard +0.8
10 The matrix \(\mathbf { A }\) is defined by $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 5 & 1 \\ 1 & - 2 & - 2 \\ 2 & 3 & \theta \end{array} \right)$$
  1. (a) Find the rank of \(\mathbf { A }\) when \(\theta \neq - 1\).
    (b) Find the rank of \(\mathbf { A }\) when \(\theta = - 1\).
    Consider the system of equations $$\begin{aligned} x + 5 y + z & = - 1 \\ x - 2 y - 2 z & = 0 \\ 2 x + 3 y + \theta z & = \theta \end{aligned}$$
  2. Solve the system of equations when \(\theta \neq - 1\).
  3. Find the general solution when \(\theta = - 1\).
  4. Show that if \(\theta = - 1\) and \(\phi \neq - 1\) then \(\mathbf { A } \mathbf { x } = \left( \begin{array} { r } - 1 \\ 0 \\ \phi \end{array} \right)\) has no solution.
CAIE FP1 2019 November Q11 EITHER
10 marks Challenging +1.8
It is given that \(w = \cos y\) and $$\tan y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 2 } + 2 \tan y \frac { \mathrm {~d} y } { \mathrm {~d} x } = 1 + \mathrm { e } ^ { - 2 x } \sec y$$
  1. Show that $$\frac { \mathrm { d } ^ { 2 } w } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} w } { \mathrm {~d} x } + w = - \mathrm { e } ^ { - 2 x }$$
  2. Find the particular solution for \(y\) in terms of \(x\), given that when \(x = 0 , y = \frac { 1 } { 3 } \pi\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 3 } }\). [10]
CAIE FP1 2019 November Q11 OR
Challenging +1.2
The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations, for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\), as follows: $$\begin{aligned} & C _ { 1 } : r = 2 \left( \mathrm { e } ^ { \theta } + \mathrm { e } ^ { - \theta } \right) , \\ & C _ { 2 } : r = \mathrm { e } ^ { 2 \theta } - \mathrm { e } ^ { - 2 \theta } \end{aligned}$$ The curves intersect at the point \(P\) where \(\theta = \alpha\).
  1. Show that \(\mathrm { e } ^ { 2 \alpha } - 2 \mathrm { e } ^ { \alpha } - 1 = 0\). Hence find the exact value of \(\alpha\) and show that the value of \(r\) at \(P\) is \(4 \sqrt { } 2\).
  2. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram.
  3. Find the area of the region enclosed by \(C _ { 1 } , C _ { 2 }\) and the initial line, giving your answer correct to 3 significant figures.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2017 Specimen Q1
Standard +0.8
1 The curve \(C\) is defined parametrically by $$x = 2 \cos ^ { 3 } t \quad \text { and } \quad y = 2 \sin ^ { 3 } t , \quad \text { for } 0 < t < \frac { 1 } { 2 } \pi$$ Show that, at the point with parameter \(t\), $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { 1 } { 6 } \sec ^ { 4 } t \operatorname { cosec } t$$
CAIE FP1 2017 Specimen Q2
Standard +0.8
2 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 4 x = 7 - 2 t ^ { 2 }$$
CAIE FP1 2017 Specimen Q3
Challenging +1.2
3 Given that \(a\) is a constant, prove by mathematical induction that, for every positive integer \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( x \mathrm { e } ^ { a x } \right) = n a ^ { n - 1 } \mathrm { e } ^ { a x } + a ^ { n } x \mathrm { e } ^ { a x }$$
CAIE FP1 2017 Specimen Q4
Challenging +1.2
4 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that, for all positive integers \(n\), $$a _ { n } = \frac { n + 5 } { \sqrt { } \left( n ^ { 2 } - n + 1 \right) } - \frac { n + 6 } { \sqrt { } \left( n ^ { 2 } + n + 1 \right) }$$ The sum \(\sum _ { n = 1 } ^ { N } a _ { n }\) is denoted by \(S _ { N }\).
  1. Find the value of \(S _ { 30 }\) correct to 3 decimal places.
  2. Find the least value of \(N\) for which \(S _ { N } > 4.9\).
CAIE FP1 2017 Specimen Q5
5 marks Standard +0.8
5 The cubic equation \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers, has roots \(\alpha , \beta\) and \(\gamma\), such that $$\begin{aligned} \alpha + \beta + \gamma & = 15 \\ \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 83 \end{aligned}$$
  1. Write down the value of \(p\) and find the value of \(q\).
  2. Given that \(\alpha , \beta\) and \(\gamma\) are all real and that \(\alpha \beta + \alpha \gamma = 36\), find \(\alpha\) and hence find the value of \(r\). [5]
CAIE FP1 2017 Specimen Q6
Standard +0.3
6 The matrix A, where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 0 & 0 \\ 10 & - 7 & 10 \\ 7 & - 5 & 8 \end{array} \right)$$ has eigenvalues 1 and 3 .
  1. Find corresponding eigenvectors.
    It is given that \(\left( \begin{array} { l } 0 \\ 2 \\ 1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\).
  2. Find the corresponding eigenvalue.
  3. Find a diagonal matrix \(\mathbf { D }\) and matrices \(\mathbf { P }\) and \(\mathbf { P } ^ { - 1 }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\).
CAIE FP1 2017 Specimen Q7
Challenging +1.2
7 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 2 & - 3 & 1 \\ 3 & - 5 & - 7 & 7 \\ 5 & - 9 & - 13 & 9 \\ 7 & - 13 & - 19 & 11 \end{array} \right)$$
  1. Find the rank of \(\mathbf { M }\) and a basis for the null space of T .
  2. The vector \(\left( \begin{array} { l } 1 \\ 2 \\ 3 \\ 4 \end{array} \right)\) is denoted by \(\mathbf { e }\). Show that there is a solution of the equation \(\mathbf { M x } = \mathbf { M e }\) of the form \(\mathbf { x } = \left( \begin{array} { c } a \\ b \\ - 1 \\ - 1 \end{array} \right)\), where the constants \(a\) and \(b\) are to be found.
CAIE FP1 2017 Specimen Q8
Standard +0.8
8 The curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } + k x } { x + 1 }\), where \(k\) is a constant.
  1. Find the set of values of \(k\) for which \(C\) has no stationary points.
  2. For the case \(k = 4\), find the equations of the asymptotes of \(C\) and sketch \(C\), indicating the coordinates of the points where \(C\) intersects the coordinate axes.
CAIE FP1 2017 Specimen Q9
6 marks Challenging +1.3
9 It is given that \(I _ { n } = \int _ { 1 } ^ { \mathrm { e } } ( \ln x ) ^ { n } \mathrm {~d} x\) for \(n \geqslant 0\).
  1. Show that $$I _ { n } = ( n - 1 ) \left[ I _ { n - 2 } - I _ { n - 1 } \right] \text { for } n \geqslant 2 .$$
  2. Hence find, in an exact form, the mean value of \(( \ln x ) ^ { 3 }\) with respect to \(x\) over the interval \(1 \leqslant x \leqslant \mathrm { e }\). [6]
CAIE FP1 2017 Specimen Q10
3 marks Challenging +1.3
10
  1. Using de Moivre's theorem, show that $$\tan 5 \theta = \frac { 5 \tan \theta - 10 \tan ^ { 3 } \theta + \tan ^ { 5 } \theta } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta } .$$
  2. Hence show that the equation \(x ^ { 2 } - 10 x + 5 = 0\) has roots \(\tan ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\tan ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\).
  3. Deduce a quadratic equation, with integer coefficients, having roots \(\sec ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\sec ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\). [3]
CAIE FP1 2017 Specimen Q11 EITHER
Challenging +1.8
The points \(A , B\) and \(C\) have position vectors \(\mathbf { i } , 2 \mathbf { j }\) and \(4 \mathbf { k }\) respectively, relative to an origin \(O\). The point \(N\) is the foot of the perpendicular from \(O\) to the plane \(A B C\). The point \(P\) on the line-segment \(O N\) is such that \(O P = \frac { 3 } { 4 } O N\). The line \(A P\) meets the plane \(O B C\) at \(Q\).
  1. Find a vector perpendicular to the plane \(A B C\) and show that the length of \(O N\) is \(\frac { 4 } { \sqrt { } ( 21 ) }\).
  2. Find the position vector of the point \(Q\).
  3. Show that the acute angle between the planes \(A B C\) and \(A B Q\) is \(\cos ^ { - 1 } \left( \frac { 2 } { 3 } \right)\).
CAIE FP1 2017 Specimen Q11 OR
Standard +0.8
The curve \(C\) has polar equation \(r = a ( 1 - \cos \theta )\) for \(0 \leqslant \theta < 2 \pi\).
  1. Sketch \(C\).
  2. Find the area of the region enclosed by the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\), the half-line \(\theta = \frac { 1 } { 2 } \pi\) and the half-line \(\theta = \frac { 3 } { 2 } \pi\).
  3. Show that $$\left( \frac { \mathrm { d } s } { \mathrm {~d} \theta } \right) ^ { 2 } = 4 a ^ { 2 } \sin ^ { 2 } \left( \frac { 1 } { 2 } \theta \right)$$ where \(s\) denotes arc length, and find the length of the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\).
CAIE FP2 2009 June Q1
Challenging +1.2
1 A line \(O P\) of fixed length \(l\) rotates in a plane about the fixed point \(O\). At time \(t = 0\), the line is at the position \(O A\). At time \(t\), angle \(A O P = \theta\) radians and \(\frac { \mathrm { d } \theta } { \mathrm { d } t } = \sin \theta\). Show that, for all \(t\), the magnitude of the acceleration of \(P\) is equal to the magnitude of its velocity.
CAIE FP2 2009 June Q2
Moderate -0.5
2 The tip of a sewing-machine needle oscillates vertically in simple harmonic motion through a distance of 2.10 cm . It takes 2.25 s to perform 100 complete oscillations. Find, in \(\mathrm { m } \mathrm { s } ^ { - 1 }\), the maximum speed of the tip of the needle. Show that the speed of the tip when it is at a distance of 0.5 cm from a position of instantaneous rest is \(2.50 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), correct to 3 significant figures.
CAIE FP2 2009 June Q3
Challenging +1.8
3
\includegraphics[max width=\textwidth, alt={}, center]{15ed1dfc-8188-4e20-9c0b-ce31af35f0b6-2_513_711_890_717} A uniform lamina of mass \(m\) is bounded by concentric circles with centre \(O\) and radii \(a\) and \(2 a\). The lamina is free to rotate about a fixed smooth horizontal axis \(T\) which is tangential to the outer rim (see diagram). Show that the moment of inertia of the lamina about \(T\) is \(\frac { 21 } { 4 } m a ^ { 2 }\). When hanging at rest, with \(O\) vertically below \(T\), the lamina is given an angular speed \(\omega\) about \(T\). The lamina comes to instantaneous rest in the subsequent motion. Neglecting air resistance, find the set of possible values of \(\omega\).
CAIE FP2 2009 June Q4
Challenging +1.8
4
\includegraphics[max width=\textwidth, alt={}, center]{15ed1dfc-8188-4e20-9c0b-ce31af35f0b6-3_512_983_267_580} A uniform sphere rests on a horizontal plane. The sphere has centre \(O\), radius 0.6 m and weight 36 N . A uniform rod \(A B\), of weight 14 N and length 1 m , rests with \(A\) in contact with the plane and \(B\) in contact with the sphere at the end of a horizontal diameter. The point of contact of the sphere with the plane is \(C\), and \(A , B , C\) and \(O\) lie in the same vertical plane (see diagram). The contacts at \(A , B\) and \(C\) are rough and the system is in equilibrium. By taking moments about \(C\) for the system, show that the magnitude of the normal contact force at \(A\) is 10 N . Show that the magnitudes of the frictional forces at \(A , B\) and \(C\) are equal. The coefficients of friction at \(A , B\) and \(C\) are all equal to \(\mu\). Find the smallest possible value of \(\mu\).
CAIE FP2 2009 June Q5
Challenging +1.2
5 Two spheres \(A\) and \(B\), of equal radius, have masses \(m _ { 1 }\) and \(m _ { 2 }\) respectively. They lie at rest on a smooth horizontal plane. Sphere \(A\) is projected directly towards sphere \(B\) with speed \(u\) and, as a result of the collision, \(A\) is brought to rest. Show that
  1. the speed of \(B\) immediately after the collision cannot exceed \(u\),
  2. \(m _ { 1 } \leqslant m _ { 2 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{15ed1dfc-8188-4e20-9c0b-ce31af35f0b6-3_273_611_1745_767} After the collision, \(B\) hits a smooth vertical wall which is at an angle of \(60 ^ { \circ }\) to the direction of motion of \(B\) (see diagram). In the impact with the wall \(B\) loses \(\frac { 2 } { 3 }\) of its kinetic energy. Find the coefficient of restitution between \(B\) and the wall and show that the direction of motion of \(B\) turns through \(90 ^ { \circ }\).