| Exam Board | CAIE |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2009 |
| Session | June |
| Topic | Centre of Mass 2 |
3
\includegraphics[max width=\textwidth, alt={}, center]{15ed1dfc-8188-4e20-9c0b-ce31af35f0b6-2_513_711_890_717}
A uniform lamina of mass \(m\) is bounded by concentric circles with centre \(O\) and radii \(a\) and \(2 a\). The lamina is free to rotate about a fixed smooth horizontal axis \(T\) which is tangential to the outer rim (see diagram). Show that the moment of inertia of the lamina about \(T\) is \(\frac { 21 } { 4 } m a ^ { 2 }\).
When hanging at rest, with \(O\) vertically below \(T\), the lamina is given an angular speed \(\omega\) about \(T\). The lamina comes to instantaneous rest in the subsequent motion. Neglecting air resistance, find the set of possible values of \(\omega\).