A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q10
CAIE FP1 2017 Specimen — Question 10
3 marks
Exam Board
CAIE
Module
FP1 (Further Pure Mathematics 1)
Year
2017
Session
Specimen
Marks
3
Topic
Complex numbers 2
10
Using de Moivre's theorem, show that $$\tan 5 \theta = \frac { 5 \tan \theta - 10 \tan ^ { 3 } \theta + \tan ^ { 5 } \theta } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta } .$$
Hence show that the equation \(x ^ { 2 } - 10 x + 5 = 0\) has roots \(\tan ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\tan ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\).
Deduce a quadratic equation, with integer coefficients, having roots \(\sec ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\sec ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\). [3]
This paper
(12 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
5
Q6
Q7
Q8
Q9
6
Q10
3
Q11 EITHER
Q11 OR