CAIE FP2 2009 June — Question 4

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2009
SessionJune
TopicMoments

4
\includegraphics[max width=\textwidth, alt={}, center]{15ed1dfc-8188-4e20-9c0b-ce31af35f0b6-3_512_983_267_580} A uniform sphere rests on a horizontal plane. The sphere has centre \(O\), radius 0.6 m and weight 36 N . A uniform rod \(A B\), of weight 14 N and length 1 m , rests with \(A\) in contact with the plane and \(B\) in contact with the sphere at the end of a horizontal diameter. The point of contact of the sphere with the plane is \(C\), and \(A , B , C\) and \(O\) lie in the same vertical plane (see diagram). The contacts at \(A , B\) and \(C\) are rough and the system is in equilibrium. By taking moments about \(C\) for the system, show that the magnitude of the normal contact force at \(A\) is 10 N . Show that the magnitudes of the frictional forces at \(A , B\) and \(C\) are equal. The coefficients of friction at \(A , B\) and \(C\) are all equal to \(\mu\). Find the smallest possible value of \(\mu\).