7 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where
$$\mathbf { M } = \left( \begin{array} { r r r r }
1 & - 2 & - 3 & 1
3 & - 5 & - 7 & 7
5 & - 9 & - 13 & 9
7 & - 13 & - 19 & 11
\end{array} \right)$$
- Find the rank of \(\mathbf { M }\) and a basis for the null space of T .
- The vector \(\left( \begin{array} { l } 1
2
3
4 \end{array} \right)\) is denoted by \(\mathbf { e }\). Show that there is a solution of the equation \(\mathbf { M x } = \mathbf { M e }\) of the form \(\mathbf { x } = \left( \begin{array} { c } a
b
- 1
- 1 \end{array} \right)\), where the constants \(a\) and \(b\) are to be found.