CAIE FP1 2017 Specimen — Question 7

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2017
SessionSpecimen
Topic3x3 Matrices

7 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 2 & - 3 & 1
3 & - 5 & - 7 & 7
5 & - 9 & - 13 & 9
7 & - 13 & - 19 & 11 \end{array} \right)$$
  1. Find the rank of \(\mathbf { M }\) and a basis for the null space of T .
  2. The vector \(\left( \begin{array} { l } 1
    2
    3
    4 \end{array} \right)\) is denoted by \(\mathbf { e }\). Show that there is a solution of the equation \(\mathbf { M x } = \mathbf { M e }\) of the form \(\mathbf { x } = \left( \begin{array} { c } a
    b
    - 1
    - 1 \end{array} \right)\), where the constants \(a\) and \(b\) are to be found.