CAIE FP1 2017 Specimen — Question 5 5 marks

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2017
SessionSpecimen
Marks5
TopicRoots of polynomials

5 The cubic equation \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers, has roots \(\alpha , \beta\) and \(\gamma\), such that $$\begin{aligned} \alpha + \beta + \gamma & = 15
\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 83 \end{aligned}$$
  1. Write down the value of \(p\) and find the value of \(q\).
  2. Given that \(\alpha , \beta\) and \(\gamma\) are all real and that \(\alpha \beta + \alpha \gamma = 36\), find \(\alpha\) and hence find the value of \(r\). [5]