| Exam Board | CAIE |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2009 |
| Session | June |
| Topic | Circular Motion 1 |
1 A line \(O P\) of fixed length \(l\) rotates in a plane about the fixed point \(O\). At time \(t = 0\), the line is at the position \(O A\). At time \(t\), angle \(A O P = \theta\) radians and \(\frac { \mathrm { d } \theta } { \mathrm { d } t } = \sin \theta\). Show that, for all \(t\), the magnitude of the acceleration of \(P\) is equal to the magnitude of its velocity.