Questions — AQA (3508 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA FP3 2011 January Q3
3 A curve \(C\) has polar equation \(r ( 1 + \cos \theta ) = 2\).
  1. Find the cartesian equation of \(C\), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
  2. The straight line with polar equation \(4 r = 3 \sec \theta\) intersects the curve \(C\) at the points \(P\) and \(Q\). Find the length of \(P Q\).
AQA FP3 2011 January Q4
4 By using an integrating factor, find the solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } - \frac { 2 } { x } y = 2 x ^ { 3 } \mathrm { e } ^ { 2 x }$$ given that \(y = \mathrm { e } ^ { 4 }\) when \(x = 2\). Give your answer in the form \(y = \mathrm { f } ( x )\).
AQA FP3 2011 January Q5
5
  1. Write \(\frac { 4 } { 4 x + 1 } - \frac { 3 } { 3 x + 2 }\) in the form \(\frac { C } { ( 4 x + 1 ) ( 3 x + 2 ) }\), where \(C\) is a constant.
    (l mark)
  2. Evaluate the improper integral $$\int _ { 1 } ^ { \infty } \frac { 10 } { ( 4 x + 1 ) ( 3 x + 2 ) } d x$$ showing the limiting process used and giving your answer in the form \(\ln k\), where \(k\) is a constant.
    (6 marks)
AQA FP3 2011 January Q6
6 The diagram shows a sketch of a curve \(C\).
\includegraphics[max width=\textwidth, alt={}, center]{8cb4b110-274e-47ec-a31b-ee8f84434a65-3_305_556_1078_721} The polar equation of the curve is $$r = 2 \sin 2 \theta \sqrt { \cos \theta } , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }$$ Show that the area of the region bounded by \(C\) is \(\frac { 16 } { 15 }\).
AQA FP3 2011 January Q7
7
  1. Write down the expansions in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\) of:
    1. \(\cos x + \sin x\);
    2. \(\quad \ln ( 1 + 3 x )\).
  2. It is given that \(y = \mathrm { e } ^ { \tan x }\).
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = ( 1 + \tan x ) ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x }\).
    2. Find the value of \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) when \(x = 0\).
    3. Hence, by using Maclaurin's theorem, show that the first four terms in the expansion, in ascending powers of \(x\), of \(\mathrm { e } ^ { \tan x }\) are $$1 + x + \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 2 } x ^ { 3 }$$
  3. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { \mathrm { e } ^ { \tan x } - ( \cos x + \sin x ) } { x \ln ( 1 + 3 x ) } \right]$$
AQA FP3 2011 January Q8
8
  1. Given that \(x = \mathrm { e } ^ { t }\) and that \(y\) is a function of \(x\), show that $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { d } y } { \mathrm {~d} t }$$
  2. Hence show that the substitution \(x = \mathrm { e } ^ { t }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 3 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 2 \ln x$$ into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 4 y = 2 t$$
  3. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 4 y = 2 t$$
  4. Hence solve the differential equation \(x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 3 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 2 \ln x\), given that \(y = \frac { 3 } { 2 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 }\) when \(x = 1\).
    (5 marks)
AQA FP3 2012 January Q1
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \frac { y - x } { y ^ { 2 } + x }$$ and $$y ( 1 ) = 2$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 1.1 )\).
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 1.2 )\), giving your answer to three decimal places.
AQA FP3 2012 January Q2
2 Find $$\lim _ { x \rightarrow 0 } \left[ \frac { \sqrt { 4 + x } - 2 } { x + x ^ { 2 } } \right]$$ (3 marks)
AQA FP3 2012 January Q3
3 Solve the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 10 y = 26 \mathrm { e } ^ { x }$$ given that \(y = 5\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 11\) when \(x = 0\). Give your answer in the form \(y = \mathrm { f } ( x )\).
(10 marks)
AQA FP3 2012 January Q4
4
  1. By using an integrating factor, find the general solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { 2 } { x } y = \ln x$$
  2. Hence, given that \(y \rightarrow 0\) as \(x \rightarrow 0\), find the value of \(y\) when \(x = 1\).
AQA FP3 2012 January Q5
5
  1. Explain why \(\int _ { \frac { 1 } { 2 } } ^ { \infty } \frac { x ( 1 - 2 x ) } { x ^ { 2 } + 3 \mathrm { e } ^ { 4 x } } \mathrm {~d} x\) is an improper integral.
    (1 mark)
  2. By using the substitution \(u = x ^ { 2 } \mathrm { e } ^ { - 4 x } + 3\), find $$\int \frac { x ( 1 - 2 x ) } { x ^ { 2 } + 3 \mathrm { e } ^ { 4 x } } \mathrm {~d} x$$
  3. Hence evaluate \(\int _ { \frac { 1 } { 2 } } ^ { \infty } \frac { x ( 1 - 2 x ) } { x ^ { 2 } + 3 \mathrm { e } ^ { 4 x } } \mathrm {~d} x\), showing the limiting process used.
AQA FP3 2012 January Q6
6
  1. Given that \(y = \ln \cos 2 x\), find \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\).
  2. Use Maclaurin's theorem to show that the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \cos 2 x\) are \(- 2 x ^ { 2 } - \frac { 4 } { 3 } x ^ { 4 }\).
  3. Hence find the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \sec ^ { 2 } 2 x\).
AQA FP3 2012 January Q7
7 It is given that, for \(x \neq 0 , y\) satisfies the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 ( 3 x + 1 ) \frac { \mathrm { d } y } { \mathrm {~d} x } + 3 y ( 3 x + 2 ) = 18 x$$
  1. Show that the substitution \(u = x y\) transforms this differential equation into $$\frac { \mathrm { d } ^ { 2 } u } { \mathrm {~d} x ^ { 2 } } + 6 \frac { \mathrm {~d} u } { \mathrm {~d} x } + 9 u = 18 x$$
  2. Hence find the general solution of the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 ( 3 x + 1 ) \frac { \mathrm { d } y } { \mathrm {~d} x } + 3 y ( 3 x + 2 ) = 18 x$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
    (8 marks)
AQA FP3 2012 January Q8
8 The diagram shows a sketch of the curve \(C\) with polar equation $$r = 3 + 2 \cos \theta , \quad 0 \leqslant \theta \leqslant 2 \pi$$ \includegraphics[max width=\textwidth, alt={}, center]{80c4336c-b0ca-46de-a871-812e6923f7f2-4_463_668_1468_699}
  1. Find the area of the region bounded by the curve \(C\).
  2. A circle, whose cartesian equation is \(( x - 4 ) ^ { 2 } + y ^ { 2 } = 16\), intersects the curve \(C\) at the points \(A\) and \(B\).
    1. Find, in surd form, the length of \(A B\).
    2. Find the perimeter of the segment \(A O B\) of the circle, where \(O\) is the pole.
AQA FP3 2013 January Q1
1 It is given that \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \sqrt { 2 x + y }$$ and $$y ( 3 ) = 5$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.2\), to obtain an approximation to \(y ( 3.2 )\), giving your answer to four decimal places.
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 3.4 )\), giving your answer to three decimal places.
AQA FP3 2013 January Q2
2
  1. Write down the expansion of \(\mathrm { e } ^ { 3 x }\) in ascending powers of \(x\) up to and including the term in \(x ^ { 2 }\).
  2. Hence, or otherwise, find the term in \(x ^ { 2 }\) in the expansion, in ascending powers of \(x\), of \(\mathrm { e } ^ { 3 x } ( 1 + 2 x ) ^ { - \frac { 3 } { 2 } }\).
    (4 marks)
AQA FP3 2013 January Q3
3 It is given that the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 0$$ is \(y = \mathrm { e } ^ { x } ( A x + B )\). Hence find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 6 \mathrm { e } ^ { x }$$
AQA FP3 2013 January Q4
4
  1. Explain why \(\int _ { 0 } ^ { 1 } x ^ { 4 } \ln x \mathrm {~d} x\) is an improper integral.
    (l mark)
  2. Evaluate \(\int _ { 0 } ^ { 1 } x ^ { 4 } \ln x \mathrm {~d} x\), showing the limiting process used.
    (6 marks)
AQA FP3 2013 January Q5
5
  1. Show that \(\tan x\) is an integrating factor for the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { \sec ^ { 2 } x } { \tan x } y = \tan x$$ (2 marks)
  2. Hence solve this differential equation, given that \(y = 3\) when \(x = \frac { \pi } { 4 }\).
    (6 marks)
AQA FP3 2013 January Q6
6
  1. It is given that \(y = \ln \left( \mathrm { e } ^ { 3 x } \cos x \right)\).
    1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 - \tan x\).
    2. Find \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\).
  2. Hence use Maclaurin's theorem to show that the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \left( \mathrm { e } ^ { 3 x } \cos x \right)\) are \(3 x - \frac { 1 } { 2 } x ^ { 2 } - \frac { 1 } { 12 } x ^ { 4 }\).
    (3 marks)
  3. Write down the expansion of \(\ln ( 1 + p x )\), where \(p\) is a constant, in ascending powers of \(x\) up to and including the term in \(x ^ { 2 }\).
    1. Find the value of \(p\) for which \(\lim _ { x \rightarrow 0 } \left[ \frac { 1 } { x ^ { 2 } } \ln \left( \frac { \mathrm { e } ^ { 3 x } \cos x } { 1 + p x } \right) \right]\) exists.
    2. Hence find the value of \(\lim _ { x \rightarrow 0 } \left[ \frac { 1 } { x ^ { 2 } } \ln \left( \frac { \mathrm { e } ^ { 3 x } \cos x } { 1 + p x } \right) \right]\) when \(p\) takes the value found in part (d)(i).
AQA FP3 2013 January Q7
7
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 10 y = \mathrm { e } ^ { 2 t }$$ giving your answer in the form \(y = \mathrm { f } ( t )\).
  2. Given that \(x = t ^ { \frac { 1 } { 2 } } , x > 0 , t > 0\) and \(y\) is a function of \(x\), show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 4 t \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t }$$ (5 marks)
  3. Hence show that the substitution \(x = t ^ { \frac { 1 } { 2 } }\) transforms the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 12 x ^ { 2 } + 1 \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 40 x ^ { 3 } y = 4 x ^ { 3 } \mathrm { e } ^ { 2 x ^ { 2 } }$$ into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 10 y = \mathrm { e } ^ { 2 t }$$ (2 marks)
  4. Hence write down the general solution of the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 12 x ^ { 2 } + 1 \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 40 x ^ { 3 } y = 4 x ^ { 3 } \mathrm { e } ^ { 2 x ^ { 2 } }$$ (l mark)
AQA FP3 2013 January Q8
8 The diagram shows a sketch of a curve.
\includegraphics[max width=\textwidth, alt={}, center]{f05737eb-adb1-4228-aebf-6b5c7f26a434-5_464_574_402_726} The polar equation of the curve is $$r = \sin 2 \theta \sqrt { \left( 2 + \frac { 1 } { 2 } \cos \theta \right) } , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }$$ The point \(P\) is the point of the curve at which \(\theta = \frac { \pi } { 3 }\). The perpendicular from \(P\) to the initial line meets the initial line at the point \(N\).
    1. Find the exact value of \(r\) when \(\theta = \frac { \pi } { 3 }\).
    2. Show that the polar equation of the line \(P N\) is \(r = \frac { 3 \sqrt { 3 } } { 8 } \sec \theta\).
    3. Find the area of triangle \(O N P\) in the form \(\frac { k \sqrt { 3 } } { 128 }\), where \(k\) is an integer.
    1. Using the substitution \(u = \sin \theta\), or otherwise, find \(\int \sin ^ { n } \theta \cos \theta \mathrm {~d} \theta\), where \(n \geqslant 2\).
    2. Find the area of the shaded region bounded by the line \(O P\) and the arc \(O P\) of the curve. Give your answer in the form \(a \pi + b \sqrt { 3 } + c\), where \(a , b\) and \(c\) are constants.
      (8 marks)
AQA FP3 2006 June Q1
1 It is given that \(y\) satisfies the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 8 x - 10 - 10 \cos 2 x$$
  1. Show that \(y = 2 x + \sin 2 x\) is a particular integral of the given differential equation.
  2. Find the general solution of the differential equation.
  3. Hence express \(y\) in terms of \(x\), given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\).
AQA FP3 2006 June Q2
2 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \frac { x ^ { 2 } + y ^ { 2 } } { x y }$$ and $$y ( 1 ) = 2$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 1.1 )\).
  2. Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.1\), to obtain an approximation to \(y ( 1.1 )\), giving your answer to four decimal places.
AQA FP3 2006 June Q3
3
  1. Show that \(\sin x\) is an integrating factor for the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + ( \cot x ) y = 2 \cos x$$
  2. Solve this differential equation, given that \(y = 2\) when \(x = \frac { \pi } { 2 }\).