AQA FP3 2011 January — Question 7

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2011
SessionJanuary
TopicTaylor series
TypeMaclaurin series for products/secant

7
  1. Write down the expansions in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\) of:
    1. \(\cos x + \sin x\);
    2. \(\quad \ln ( 1 + 3 x )\).
  2. It is given that \(y = \mathrm { e } ^ { \tan x }\).
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = ( 1 + \tan x ) ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x }\).
    2. Find the value of \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) when \(x = 0\).
    3. Hence, by using Maclaurin's theorem, show that the first four terms in the expansion, in ascending powers of \(x\), of \(\mathrm { e } ^ { \tan x }\) are $$1 + x + \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 2 } x ^ { 3 }$$
  3. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { \mathrm { e } ^ { \tan x } - ( \cos x + \sin x ) } { x \ln ( 1 + 3 x ) } \right]$$