2 The function \(y ( x )\) satisfies the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$
where
$$\mathrm { f } ( x , y ) = \frac { x ^ { 2 } + y ^ { 2 } } { x y }$$
and
$$y ( 1 ) = 2$$
- Use the Euler formula
$$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$
with \(h = 0.1\), to obtain an approximation to \(y ( 1.1 )\).
- Use the improved Euler formula
$$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$
where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.1\), to obtain an approximation to \(y ( 1.1 )\), giving your answer to four decimal places.