1 It is given that \(y\) satisfies the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 8 x - 10 - 10 \cos 2 x$$
- Show that \(y = 2 x + \sin 2 x\) is a particular integral of the given differential equation.
- Find the general solution of the differential equation.
- Hence express \(y\) in terms of \(x\), given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\).