A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Integration with Partial Fractions
Q5
AQA FP3 2012 January — Question 5
Exam Board
AQA
Module
FP3 (Further Pure Mathematics 3)
Year
2012
Session
January
Topic
Integration with Partial Fractions
5
Explain why \(\int _ { \frac { 1 } { 2 } } ^ { \infty } \frac { x ( 1 - 2 x ) } { x ^ { 2 } + 3 \mathrm { e } ^ { 4 x } } \mathrm {~d} x\) is an improper integral.
(1 mark)
By using the substitution \(u = x ^ { 2 } \mathrm { e } ^ { - 4 x } + 3\), find $$\int \frac { x ( 1 - 2 x ) } { x ^ { 2 } + 3 \mathrm { e } ^ { 4 x } } \mathrm {~d} x$$
Hence evaluate \(\int _ { \frac { 1 } { 2 } } ^ { \infty } \frac { x ( 1 - 2 x ) } { x ^ { 2 } + 3 \mathrm { e } ^ { 4 x } } \mathrm {~d} x\), showing the limiting process used.
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8