It is given that \(y = \ln \left( \mathrm { e } ^ { 3 x } \cos x \right)\).
Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 - \tan x\).
Find \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\).
Hence use Maclaurin's theorem to show that the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \left( \mathrm { e } ^ { 3 x } \cos x \right)\) are \(3 x - \frac { 1 } { 2 } x ^ { 2 } - \frac { 1 } { 12 } x ^ { 4 }\).
(3 marks)
Write down the expansion of \(\ln ( 1 + p x )\), where \(p\) is a constant, in ascending powers of \(x\) up to and including the term in \(x ^ { 2 }\).
Find the value of \(p\) for which \(\lim _ { x \rightarrow 0 } \left[ \frac { 1 } { x ^ { 2 } } \ln \left( \frac { \mathrm { e } ^ { 3 x } \cos x } { 1 + p x } \right) \right]\) exists.
Hence find the value of \(\lim _ { x \rightarrow 0 } \left[ \frac { 1 } { x ^ { 2 } } \ln \left( \frac { \mathrm { e } ^ { 3 x } \cos x } { 1 + p x } \right) \right]\) when \(p\) takes the value found in part (d)(i).