Given that \(x = \mathrm { e } ^ { t }\) and that \(y\) is a function of \(x\), show that
$$x \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { d } y } { \mathrm {~d} t }$$
Hence show that the substitution \(x = \mathrm { e } ^ { t }\) transforms the differential equation
$$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 3 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 2 \ln x$$
into
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 4 y = 2 t$$
Find the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 4 y = 2 t$$
Hence solve the differential equation \(x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 3 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 2 \ln x\), given that \(y = \frac { 3 } { 2 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 }\) when \(x = 1\).
(5 marks)