AQA FP3 2011 January — Question 8

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2011
SessionJanuary
TopicSecond order differential equations

8
  1. Given that \(x = \mathrm { e } ^ { t }\) and that \(y\) is a function of \(x\), show that $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { d } y } { \mathrm {~d} t }$$
  2. Hence show that the substitution \(x = \mathrm { e } ^ { t }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 3 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 2 \ln x$$ into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 4 y = 2 t$$
  3. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 4 y = 2 t$$
  4. Hence solve the differential equation \(x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 3 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 2 \ln x\), given that \(y = \frac { 3 } { 2 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 }\) when \(x = 1\).
    (5 marks)