AQA FP3 2013 January — Question 7

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2013
SessionJanuary
TopicSecond order differential equations

7
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 10 y = \mathrm { e } ^ { 2 t }$$ giving your answer in the form \(y = \mathrm { f } ( t )\).
  2. Given that \(x = t ^ { \frac { 1 } { 2 } } , x > 0 , t > 0\) and \(y\) is a function of \(x\), show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 4 t \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t }$$ (5 marks)
  3. Hence show that the substitution \(x = t ^ { \frac { 1 } { 2 } }\) transforms the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 12 x ^ { 2 } + 1 \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 40 x ^ { 3 } y = 4 x ^ { 3 } \mathrm { e } ^ { 2 x ^ { 2 } }$$ into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 10 y = \mathrm { e } ^ { 2 t }$$ (2 marks)
  4. Hence write down the general solution of the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 12 x ^ { 2 } + 1 \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 40 x ^ { 3 } y = 4 x ^ { 3 } \mathrm { e } ^ { 2 x ^ { 2 } }$$ (l mark)