Complex numbers 2

277 questions · 24 question types identified

Sort by: Question count | Difficulty
Direct nth roots of complex numbers

Questions that directly ask to solve z^n = w for a given complex number w, where w is provided in Cartesian, polar, or exponential form, requiring straightforward application of De Moivre's theorem to find all n distinct roots.

40 Standard +0.4
14.4% of questions
Show example »
4 Solve the equation \(z ^ { 3 } = i\), giving your answers in the form \(e ^ { i \theta }\), where \(- \pi < \theta \leq \pi\)
[0pt] [4 marks]
View full question →
Easiest question Moderate -0.8 »
  1. Solve the equation
$$z ^ { 5 } = 32$$ Give your answers in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\)
View full question →
Hardest question Challenging +1.2 »
8
  1. Express in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\) :
    1. \(\quad 4 ( 1 + i \sqrt { 3 } )\);
    2. \(4 ( 1 - i \sqrt { 3 } )\).
  2. The complex number \(z\) satisfies the equation $$\left( z ^ { 3 } - 4 \right) ^ { 2 } = - 48$$ Show that \(z ^ { 3 } = 4 \pm 4 \sqrt { 3 } \mathrm { i }\).
    1. Solve the equation $$\left( z ^ { 3 } - 4 \right) ^ { 2 } = - 48$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
    2. Illustrate the roots on an Argand diagram.
    1. Explain why the sum of the roots of the equation $$\left( z ^ { 3 } - 4 \right) ^ { 2 } = - 48$$ is zero.
    2. Deduce that \(\cos \frac { \pi } { 9 } + \cos \frac { 3 \pi } { 9 } + \cos \frac { 5 \pi } { 9 } + \cos \frac { 7 \pi } { 9 } = \frac { 1 } { 2 }\).
View full question →
Integration using De Moivre identities

A question is this type if and only if it asks to evaluate a definite integral of powers of sin θ or cos θ by first expressing them using De Moivre-derived identities.

29 Challenging +1.3
10.5% of questions
Show example »
5 Use de Moivre's theorem to express \(\cos ^ { 4 } \theta\) in the form $$a \cos 4 \theta + b \cos 2 \theta + c$$ where \(a , b , c\) are constants to be found. Hence evaluate $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { 4 } \theta d \theta$$ leaving your answer in terms of \(\pi\).
View full question →
Easiest question Standard +0.3 »
5 Use de Moivre's theorem to express \(\cos ^ { 4 } \theta\) in the form $$a \cos 4 \theta + b \cos 2 \theta + c$$ where \(a , b , c\) are constants to be found. Hence evaluate $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { 4 } \theta d \theta$$ leaving your answer in terms of \(\pi\).
View full question →
Hardest question Hard +2.3 »
8
  1. By considering the binomial expansion of \(\left( z + \frac { 1 } { z } \right) ^ { 7 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to show that $$\cos ^ { 7 } \theta = a \cos 7 \theta + b \cos 5 \theta + c \cos 3 \theta + d \cos \theta$$ where \(a , b , c\) and \(d\) are constants to be determined.
    Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { n } \theta \mathrm {~d} \theta\).
  2. Show that $$n I _ { n } = 2 ^ { - \frac { 1 } { 2 } n } + ( n - 1 ) I _ { n - 2 }$$ \includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-18_2716_40_109_2009}
  3. Using the results given in parts (a) and (b), find the exact value of \(I _ { 9 }\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
View full question →
Sum geometric series with complex terms

A question is this type if and only if it asks to find the sum of a finite or infinite geometric series involving complex exponentials or trigonometric functions, often separating real and imaginary parts.

26 Challenging +1.3
9.4% of questions
Show example »
10 Let \(C = \sum _ { r = 0 } ^ { 20 } \binom { 20 } { r } \cos r \theta\). Show that \(C = 2 ^ { 20 } \cos ^ { 20 } \left( \frac { 1 } { 2 } \theta \right) \cos 10 \theta\).
View full question →
Easiest question Standard +0.3 »
2
  1. The infinite series \(C\) and \(S\) are defined as follows. $$\begin{aligned} & C = 1 + a \cos \theta + a ^ { 2 } \cos 2 \theta + \ldots \\ & S = a \sin \theta + a ^ { 2 } \sin 2 \theta + a ^ { 3 } \sin 3 \theta + \ldots \end{aligned}$$ where \(a\) is a real number and \(| a | < 1\).
    By considering \(C + \mathrm { j } S\), show that \(C = \frac { 1 - a \cos \theta } { 1 + a ^ { 2 } - 2 a \cos \theta }\) and find a corresponding expression for \(S\).
  2. Express the complex number \(z = - 1 + \mathrm { j } \sqrt { 3 }\) in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\). Find the 4th roots of \(z\) in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\).
    Show \(z\) and its 4th roots in an Argand diagram.
    Find the product of the 4th roots and mark this as a point on your Argand diagram.
View full question →
Hardest question Challenging +1.8 »
7
  1. State the sum of the series \(1 + \mathrm { w } + \mathrm { w } ^ { 2 } + \mathrm { w } ^ { 3 } + \ldots + \mathrm { w } ^ { \mathrm { n } - 1 }\), for \(w \neq 1\).
  2. Show that \(( 1 + i \tan \theta ) ^ { k } = \sec ^ { k } \theta ( \cos k \theta + i \sin k \theta )\), where \(\theta\) is not an integer multiple of \(\frac { 1 } { 2 } \pi\).
  3. By considering \(\sum _ { \mathrm { k } = 0 } ^ { \mathrm { n } - 1 } ( 1 + \mathrm { i } \tan \theta ) ^ { \mathrm { k } }\), show that $$\sum _ { k = 0 } ^ { n - 1 } \sec ^ { k } \theta \sin k \theta = \cot \theta \left( 1 - \sec ^ { n } \theta \cos n \theta \right)$$ provided \(\theta\) is not an integer multiple of \(\frac { 1 } { 2 } \pi\).
  4. Hence find \(\sum _ { k = 0 } ^ { 6 m - 1 } 2 ^ { k } \sin \left( \frac { 1 } { 3 } k \pi \right)\) in terms of \(m\).
View full question →
De Moivre to derive trigonometric identities

A question is this type if and only if it asks to use De Moivre's theorem to prove an identity expressing cos(nθ) or sin(nθ) as a polynomial in cos θ and/or sin θ.

26 Challenging +1.1
9.4% of questions
Show example »
5 By expanding \(\left( z ^ { 2 } + \frac { 1 } { z ^ { 2 } } \right) ^ { 3 }\), where \(z = e ^ { \mathrm { i } \theta }\), show that \(4 \cos ^ { 3 } 2 \theta = \cos 6 \theta + 3 \cos 2 \theta\).
View full question →
Easiest question Standard +0.3 »
5
  1. Prove by induction that, if \(n\) is a positive integer, $$( \cos \theta + \mathrm { i } \sin \theta ) ^ { n } = \cos n \theta + \mathrm { i } \sin n \theta$$
  2. Hence, given that $$z = \cos \theta + \mathrm { i } \sin \theta$$ show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
  3. Given further that \(z + \frac { 1 } { z } = \sqrt { 2 }\), find the value of $$z ^ { 10 } + \frac { 1 } { z ^ { 10 } }$$
View full question →
Hardest question Challenging +1.8 »
6
  1. Use de Moivre's theorem to show that \(\sin ^ { 4 } \theta = \frac { 1 } { 8 } ( \cos 4 \theta - 4 \cos 2 \theta + 3 )\).
  2. Find the solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} \theta } + y \cot \theta = \sin ^ { 3 } \theta$$ for which \(y = 0\) when \(\theta = \frac { 1 } { 2 } \pi\).
View full question →
Complex number arithmetic and simplification

A question is this type if and only if it asks to perform operations (multiplication, division, powers) on complex numbers and simplify to a specific form, without solving equations.

25 Standard +0.2
9.0% of questions
Show example »
2 The complex number \(z = e ^ { \frac { i \pi } { 3 } }\)
Which one of the following is a real number?
Circle your answer.
[0pt] [1 mark]
\(z ^ { 4 }\)
\(z ^ { 5 }\)
\(z ^ { 6 }\)
\(z ^ { 7 }\)
View full question →
Easiest question Easy -1.2 »
2 The complex number \(z = e ^ { \frac { i \pi } { 3 } }\)
Which one of the following is a real number?
Circle your answer.
[0pt] [1 mark]
\(z ^ { 4 }\)
\(z ^ { 5 }\)
\(z ^ { 6 }\)
\(z ^ { 7 }\)
View full question →
Hardest question Challenging +1.8 »
6 The set \(S\) consists of the following four complex numbers.
\(\begin{array} { l l l l } \sqrt { 3 } + \mathrm { i } & - \sqrt { 3 } - \mathrm { i } & 1 - \mathrm { i } \sqrt { 3 } & - 1 + \mathrm { i } \sqrt { 3 } \end{array}\)
For \(z _ { 1 } , z _ { 2 } \in S\), the binary operation \(\bigcirc\) is defined by \(z _ { 1 } \bigcirc z _ { 2 } = \frac { 1 } { 4 } ( 1 + i \sqrt { 3 } ) z _ { 1 } z _ { 2 }\).
    1. Complete the Cayley table for \(( S , \bigcirc )\) given in the Printed Answer Booklet.
    2. Verify that ( \(S , \bigcirc\) ) is a group.
    3. State the order of each element of \(( S , \bigcirc )\).
  1. Write down the only proper subgroup of ( \(S , \bigcirc\) ).
    1. Explain why ( \(S , \bigcirc\) ) is a cyclic group.
    2. List all possible generators of \(( S , \bigcirc )\).
View full question →
Express roots in trigonometric form

A question is this type if and only if it asks to express roots of a polynomial equation in the form cos(kπ), sin(kπ), tan(kπ), cot(kπ), or similar trigonometric expressions.

21 Challenging +1.2
7.6% of questions
Show example »
3 Use De Moivre's Theorem to find the smallest positive angle \(\theta\) for which $$( \cos \theta + \mathrm { i } \sin \theta ) ^ { 15 } = - \mathrm { i }$$ (5 marks)
View full question →
Easiest question Standard +0.3 »
5 Find the smallest value \(\theta\) of for which $$( \cos \theta + \mathrm { i } \sin \theta ) ^ { 5 } = \frac { 1 } { \sqrt { 2 } } ( 1 - \mathrm { i } ) \{ \theta \in \mathbb { R } : \theta > 0 \}$$ [4 marks]
View full question →
Hardest question Challenging +1.8 »
7
  1. Use de Moivre's theorem to show that $$\operatorname { cosec } 7 \theta = \frac { \operatorname { cosec } ^ { 7 } \theta } { 7 \operatorname { cosec } ^ { 6 } \theta - 56 \operatorname { cosec } ^ { 4 } \theta + 112 \operatorname { cosec } ^ { 2 } \theta - 64 }$$
  2. Hence obtain the roots of the equation $$x ^ { 7 } - 14 x ^ { 6 } + 112 x ^ { 4 } - 224 x ^ { 2 } + 128 = 0$$ in the form \(\operatorname { cosec } q \pi\), where \(q\) is rational.
View full question →
De Moivre to derive tan/cot identities

A question is this type if and only if it asks to use De Moivre's theorem (often via binomial expansion of (z ± 1/z)) to derive identities for tan(nθ) or cot(nθ) in terms of tan θ or cot θ.

18 Challenging +1.2
6.5% of questions
Show example »
7
  1. Use de Moivre's theorem to show that \(\tan 4 \theta \equiv \frac { 4 \tan \theta - 4 \tan ^ { 3 } \theta } { 1 - 6 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta }\).
  2. Hence find the exact roots of \(t ^ { 4 } + 4 \sqrt { 3 } t ^ { 3 } - 6 t ^ { 2 } - 4 \sqrt { 3 } t + 1 = 0\).
View full question →
Easiest question Standard +0.3 »
13
  1. Use de Moivre's theorem to show that $$\cos 3 \theta = 4 \cos ^ { 3 } \theta - 3 \cos \theta$$ 13
  2. Use de Moivre's theorem to express \(\sin 3 \theta\) in terms of \(\sin \theta\)
    13
  3. Hence show that $$\cot 3 \theta = \frac { \cot ^ { 3 } \theta - 3 \cot \theta } { 3 \cot ^ { 2 } \theta - 1 }$$
View full question →
Hardest question Challenging +1.8 »
6 Use de Moivre's theorem to express \(\cot 7 \theta\) in terms of \(\cot \theta\). Use the equation \(\cot 7 \theta = 0\) to show that the roots of the equation $$x ^ { 6 } - 21 x ^ { 4 } + 35 x ^ { 2 } - 7 = 0$$ are \(\cot \left( \frac { 1 } { 14 } k \pi \right)\) for \(k = 1,3,5,9,11,13\), and deduce that $$\cot ^ { 2 } \left( \frac { 1 } { 14 } \pi \right) \cot ^ { 2 } \left( \frac { 3 } { 14 } \pi \right) \cot ^ { 2 } \left( \frac { 5 } { 14 } \pi \right) = 7$$
View full question →
Complex transformations (Möbius)

A question is this type if and only if it asks to find the image of a line or circle under a transformation w = (az + b)/(cz + d), determining whether the image is a line or circle and finding its equation.

17 Challenging +1.2
6.1% of questions
Show example »
2. A transformation from the \(z\)-plane to the \(w\)-plane is given by $$w = \frac { 1 - \mathrm { i } z } { z } , \quad z \neq 0$$ The transformation maps points on the real axis in the \(z\)-plane onto the line \(l\) in the \(w\)-plane.
Find an equation of the line \(l\).
View full question →
Easiest question Standard +0.8 »
  1. A transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by
$$w = \frac { z + 2 \mathrm { i } } { \mathrm { i } z } \quad z \neq 0$$ The transformation maps points on the real axis in the \(z\)-plane onto a line in the \(w\)-plane. Find an equation of this line.
View full question →
Hardest question Challenging +1.8 »
5. The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by $$w = \frac { 2 z - 1 } { z + 3 } , \quad z \neq - 3$$ The circle in the \(z\)-plane with equation \(x ^ { 2 } + y ^ { 2 } = 1\), where \(z = x + \mathrm { i } y\), is mapped by \(T\) onto the circle \(C\) in the \(w\)-plane. Find the centre and the radius of \(C\).
View full question →
Solve equations using trigonometric identities

A question is this type if and only if it asks to solve trigonometric equations by first deriving or using a De Moivre identity to convert to polynomial form.

13 Challenging +1.2
4.7% of questions
Show example »
2. (a) Use de Moivre's theorem to show that $$\cos 5 \theta = 16 \cos ^ { 5 } \theta - 20 \cos ^ { 3 } \theta + 5 \cos \theta$$ (b) Hence find 3 distinct solutions of the equation \(16 x ^ { 5 } - 20 x ^ { 3 } + 5 x + 1 = 0\), giving your answers to 3 decimal places where appropriate.
View full question →
Easiest question Standard +0.8 »
6. The complex number \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), where \(\theta\) is real.
  1. Use de Moivre's theorem to show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$ where \(n\) is a positive integer.
  2. Show that $$\cos ^ { 5 } \theta = \frac { 1 } { 16 } ( \cos 5 \theta + 5 \cos 3 \theta + 10 \cos \theta )$$
  3. Hence find all the solutions of $$\cos 5 \theta + 5 \cos 3 \theta + 12 \cos \theta = 0$$ in the interval \(0 \leqslant \theta < 2 \pi\)
View full question →
Hardest question Challenging +1.8 »
  1. In this question you must show all stages of your working.
\section*{Solutions relying entirely on calculator technology are not acceptable.}
  1. Use de Moivre's theorem to show that $$\cos 5 x \equiv \cos x \left( a \sin ^ { 4 } x + b \sin ^ { 2 } x + c \right)$$ where \(a\), \(b\) and \(c\) are integers to be determined.
  2. Hence solve, for \(0 < \theta < \frac { \pi } { 2 }\) $$\cos 5 \theta = \sin 2 \theta \sin \theta - \cos \theta$$ giving your answers to 3 decimal places.
View full question →
Basic roots of unity properties

Questions asking to find nth roots of unity, write them in specified forms, show their sum equals zero, or display them on Argand diagrams.

10 Standard +0.3
3.6% of questions
Show example »
3
  1. Write down the fifth roots of unity.
  2. Find all the roots of the equation $$z ^ { 10 } + z ^ { 5 } + 1 = 0$$ giving each root in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\).
View full question →
Easiest question Moderate -0.3 »
3 In this question, \(w\) denotes the complex number \(\cos \frac { 2 } { 5 } \pi + \mathrm { i } \sin \frac { 2 } { 5 } \pi\).
  1. Express \(w ^ { 2 } , w ^ { 3 }\) and \(w ^ { * }\) in polar form, with arguments in the interval \(0 \leqslant \theta < 2 \pi\).
  2. The points in an Argand diagram which represent the numbers $$1 , \quad 1 + w , \quad 1 + w + w ^ { 2 } , \quad 1 + w + w ^ { 2 } + w ^ { 3 } , \quad 1 + w + w ^ { 2 } + w ^ { 3 } + w ^ { 4 }$$ are denoted by \(A , B , C , D , E\) respectively. Sketch the Argand diagram to show these points and join them in the order stated. (Your diagram need not be exactly to scale, but it should show the important features.)
  3. Write down a polynomial equation of degree 5 which is satisfied by \(w\).
View full question →
Hardest question Standard +0.8 »
9 In this question, the argument of a complex number is defined as being in the range \([ 0,2 \pi )\).
You are given that \(\omega _ { k }\), where \(k = 0,1,2 , \ldots , n - 1\), are the \(n n ^ { \text {th } }\) roots of unity for some integer \(n , n \geqslant 3\), and that these are given in order of increasing argument (so that \(\omega _ { 0 } = 1\) ).
  1. With the help of a diagram explain why \(\omega _ { k } = \left( \omega _ { 1 } \right) ^ { k }\) for \(k = 2 , \ldots , n - 1\).
  2. Using the identity given in part (a), show that \(\sum _ { \mathrm { k } = 0 } ^ { \mathrm { n } - 1 } \omega _ { \mathrm { k } } = 0\).
  3. Show that if \(z\) is a complex number then \(z + z ^ { * } = 2 \operatorname { Re } ( z )\).
  4. Using the results from parts (b) and (c) show that \(\sum _ { \mathrm { k } = 0 } ^ { \mathrm { n } - 1 } \operatorname { Re } \left( \omega _ { \mathrm { k } } \right) = 0\).
  5. With the help of a diagram explain why \(\operatorname { Re } \left( \omega _ { \mathrm { k } } \right) = \operatorname { Re } \left( \omega _ { \mathrm { n } - \mathrm { k } } \right)\) for \(k = 1,2 , \ldots , n - 1\). You should now consider the case where \(n = 5\).
    1. Use parts (d) and (e) to deduce that \(\cos \frac { 4 \pi } { 5 } = \mathrm { a } + \mathrm { b } \cos \frac { 2 \pi } { 5 }\), for some rational constants \(a\) and \(b\).
    2. Hence determine the exact value of \(\cos \frac { 2 \pi } { 5 }\).
View full question →
Roots of unity with trigonometric identities

Questions that use specific roots of unity (like ω = e^(2πi/n)) to prove trigonometric identities or exact values involving sums and products of cosines or sines at rational multiples of π.

8 Challenging +1.1
2.9% of questions
Show example »
8
    1. Show that \(\omega = \mathrm { e } ^ { \frac { 2 \pi \mathrm { i } } { 7 } }\) is a root of the equation \(z ^ { 7 } = 1\).
    2. Write down the five other non-real roots in terms of \(\omega\).
  1. Show that $$1 + \omega + \omega ^ { 2 } + \omega ^ { 3 } + \omega ^ { 4 } + \omega ^ { 5 } + \omega ^ { 6 } = 0$$
  2. Show that:
    1. \(\quad \omega ^ { 2 } + \omega ^ { 5 } = 2 \cos \frac { 4 \pi } { 7 }\);
    2. \(\cos \frac { 2 \pi } { 7 } + \cos \frac { 4 \pi } { 7 } + \cos \frac { 6 \pi } { 7 } = - \frac { 1 } { 2 }\).
View full question →
Modulus and argument calculations

A question is this type if and only if it asks to find the modulus and/or argument of a complex expression (quotient, product, power) using properties of modulus and argument.

8 Moderate -0.1
2.9% of questions
Show example »
2. $$z = 5 \sqrt { } 3 - 5 i$$ Find
  1. \(| z |\),
  2. \(\arg ( z )\), in terms of \(\pi\). $$w = 2 \left( \cos \frac { \pi } { 4 } + i \sin \frac { \pi } { 4 } \right)$$ Find
  3. \(\left| \frac { w } { z } \right|\),
  4. \(\quad \arg \left( \frac { w } { z } \right)\), in terms of \(\pi\).
View full question →
Solve polynomial equations with complex roots

A question is this type if and only if it asks to solve a polynomial equation (typically quadratic or cubic) with complex coefficients or to find complex roots, giving answers in Cartesian form x + iy.

7 Standard +0.4
2.5% of questions
Show example »
4 Solve the equation \(2 z - 5 \mathrm { i } z ^ { * } = 12\)
View full question →
Roots of unity with derived equations

Questions that use roots of unity to derive or solve related polynomial equations, often involving transformations like (z+1)^n = z^n or finding roots of equations whose solutions are expressed in terms of roots of unity.

5 Challenging +1.1
1.8% of questions
Show example »
3 Find all the roots of the equation \(( w + 1 ) ^ { 6 } = 1\), giving your answers in the form \(\mathrm { x } + \mathrm { iy }\) where \(x\) and \(y\) are real and exact.
View full question →
Geometric properties in Argand diagram

A question is this type if and only if it asks to prove geometric properties (e.g., triangle is equilateral, points are collinear) using complex numbers represented in an Argand diagram.

5 Standard +0.6
1.8% of questions
Show example »
5
  1. Solve the equation \(z ^ { 2 } - 6 \mathrm { i } z - 12 = 0\), giving the answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real and exact.
  2. On a sketch of an Argand diagram with origin \(O\), show points \(A\) and \(B\) representing the roots of the equation in part (a).
  3. Find the exact modulus and argument of each root.
  4. Hence show that the triangle \(O A B\) is equilateral.
View full question →
Find conjugate roots from polynomial

A question is this type if and only if it asks to find other roots of a polynomial with real coefficients given one complex root, using the conjugate root theorem.

5 Standard +0.3
1.8% of questions
Show example »
4 (a)Express \(z ^ { 4 } - 2 z ^ { 3 } + p z ^ { 2 } + r z + 80\) as the product of two quadratic factors with real coefficients.
[4 marks]
4 It is given that \(1 - 3 \mathrm { i }\) is one root of the quartic equation
堛的 增
4 (b) Find the value of \(p\) and the value of \(r\).
View full question →
nth roots via factorization

Questions that require factorizing a polynomial equation (often z^n - a)(z^m - b) = 0 or similar forms) before finding roots using De Moivre's theorem, rather than directly solving a single equation z^n = w.

3 Standard +0.9
1.1% of questions
Show example »
1
  1. Find \(a\) and \(b\) such that $$z ^ { 8 } - i z ^ { 5 } - z ^ { 3 } + i = \left( z ^ { 5 } - a \right) \left( z ^ { 3 } - b \right) .$$
  2. Hence find the roots of $$z ^ { 8 } - i z ^ { 5 } - z ^ { 3 } + i = 0$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
View full question →
Loci of complex numbers

A question is this type if and only if it asks to find or describe the locus (typically a circle or line) of points satisfying an equation involving complex numbers, often |z - a| = r.

3 Moderate -0.1
1.1% of questions
Show example »
1
  1. By writing \(z\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), show that \(z z ^ { * } = | z | ^ { 2 }\).
  2. Given that \(z z ^ { * } = 9\), describe the locus of \(z\).
View full question →
Argand diagram sketching and regions

A question is this type if and only if it asks to sketch or shade regions in the Argand diagram satisfying inequalities involving modulus, argument, or real/imaginary parts.

3 Standard +0.5
1.1% of questions
Show example »
  1. The complex number \(z _ { 1 }\) is defined as
$$z _ { 1 } = \frac { \left( \cos \frac { 5 \pi } { 12 } + i \sin \frac { 5 \pi } { 12 } \right) ^ { 4 } } { \left( \cos \frac { \pi } { 3 } - i \sin \frac { \pi } { 3 } \right) ^ { 3 } }$$
  1. Without using your calculator show that $$z _ { 1 } = \cos \frac { 2 \pi } { 3 } + i \sin \frac { 2 \pi } { 3 }$$
  2. Shade, on a single Argand diagram, the region \(R\) defined by $$\left| z - z _ { 1 } \right| \leqslant 1 \quad \text { and } \quad 0 \leqslant \arg \left( z - z _ { 1 } \right) \leqslant \frac { 3 \pi } { 4 }$$ Given that the complex number \(z\) lies in \(R\)
  3. determine the smallest possible positive value of \(\arg z\)
View full question →
Convert to exponential/polar form

A question is this type if and only if it asks to express a given complex number (in Cartesian form) in the form r·e^(iθ) or r(cos θ + i sin θ), typically requiring calculation of modulus and argument.

2 Moderate -0.2
0.7% of questions
Show example »
5 The complex number \(z\) is defined by \(z = \frac { 9 \sqrt { } 3 + 9 i } { \sqrt { } 3 - i }\). Find, showing all your working,
  1. an expression for \(z\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\),
  2. the two square roots of \(z\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
View full question →
nth roots with preliminary simplification

Questions where the complex number w must first be obtained through algebraic manipulation (e.g., division, simplification of expressions) before solving z^n = w using De Moivre's theorem.

1 Standard +0.3
0.4% of questions
Show example »
7
    1. Express each of the numbers \(1 + \sqrt { 3 } \mathrm { i }\) and \(1 - \mathrm { i }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\).
    2. Hence express $$( 1 + \sqrt { 3 } i ) ^ { 8 } ( 1 - i ) ^ { 5 }$$ in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\).
  1. Solve the equation $$z ^ { 3 } = ( 1 + \sqrt { 3 } \mathrm { i } ) ^ { 8 } ( 1 - \mathrm { i } ) ^ { 5 }$$ giving your answers in the form \(a \sqrt { 2 } \mathrm { e } ^ { \mathrm { i } \theta }\), where \(a\) is a positive integer and \(- \pi < \theta \leqslant \pi\).
View full question →
Invariant points under transformations

A question is this type if and only if it asks to find points that are invariant (fixed points) under a given complex transformation.

1 Standard +0.8
0.4% of questions
Show example »
  1. The transformation \(T\) from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\), is given by
$$w = \frac { z + p \mathrm { i } } { \mathrm { i } z + 3 } \quad z \neq 3 \mathrm { i } \quad p \in \mathbb { Z }$$ The point representing \(\mathrm { i } ( 1 + \sqrt { 3 } )\) is invariant under \(T\).
Determine the value of \(p\).
View full question →
Verify roots satisfy polynomial equations

A question is this type if and only if it asks to verify or show that a given complex number satisfies a particular polynomial equation by direct substitution.

1 Standard +0.3
0.4% of questions
Show example »
7
  1. Find the roots of the equation $$z ^ { 2 } + ( 2 \sqrt { } 3 ) z + 4 = 0$$ giving your answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  2. State the modulus and argument of each root.
  3. Showing all your working, verify that each root also satisfies the equation $$z ^ { 6 } = - 64$$
View full question →
Regions under complex transformations

A question is this type if and only if it asks to determine and sketch the region in the w-plane that is the image of a given region in the z-plane under a transformation.

0
0.0% of questions